GO BACK   ON TO THE NEXT PAGE
Mathematics presents itself vertically as much as it does horizontally,
and has very special alignment needs.
[beautiful math coming... please be patient] $$ 1+\frac{1}{ 1+\frac{1}{ 1+\frac{1}{ 1+\frac{1}{2}}}} =\frac{13}{8} $$
[beautiful math coming... please be patient] $ax^2+bx+c$    
[beautiful math coming... please be patient] $=(ax^2+bx)+c$ (group first two terms)  
[beautiful math coming... please be patient] $=a(x^2+\frac{b}{a}x)+c$ (factor $a\ne 0$ out of the first two terms)  
[beautiful math coming... please be patient] $=a\bigl(x^2+\frac{b}{a}x+{(\frac{b}{2a})}^2 -{(\frac{b}{2a})}^2\,\bigr)+c$ (add zero in an appropriate form inside the parentheses;
note that $\frac{b}{a}\div 2=\frac{b}{a}\cdot \frac{1}{2} = \frac{b}{2a}$)
cat animated gif; adding zero
[beautiful math coming... please be patient] $=a\bigl(x^2+\frac{b}{a}x+{(\frac{b}{2a})}^2\,\bigr)-a{(\frac{b}{2a})}^2 + c$ (distributive law)  
[beautiful math coming... please be patient] $=a{(x +\frac{b}{2a})}^2 + \text{stuff}$ (rename as a perfect square)