GO BACK   ON TO THE NEXT PAGE
[beautiful math coming... please be patient] $\alpha$ $\beta$ $\gamma$ $\delta$ $\epsilon$ $\zeta$ $\eta$ $\theta$ $\iota$ $\kappa$ $\lambda$ $\mu$ $\nu$ $\xi$ $\pi$ $\rho$ $\sigma$ $\tau$ $\upsilon$ $\chi$ $\psi$ $\omega$
[beautiful math coming... please be patient] $+$ $-$ $\times$ $\div$ $\cdot$ $\pm$ $\oplus$ $\otimes$ $||$ $\circ$ $\perp$ $\lt$ $\gt$ $\le$ $\ge$ $\not\lt$ $\not\gt$ $\not\le$ $\not\ge$ $=$ $\equiv$ $\cong$ $\sim$ $\ne$ $\not\equiv$ $\not\cong$ $\not\sim$
Representing mathematics is SO much more
than just having a lot of special symbols
(although this is certainly part of what is needed).
[beautiful math coming... please be patient] $\cup$ $\cap$ $\in$ $\not\in$ $\emptyset$ $\mathbb{Z}$ $\mathbb{R}$ $\mathbb{C}$ $\forall$ $\exists$ $\lor$ $\land$ $\Gamma$ $\Sigma$ $\Upsilon$ $\Phi$ $\Psi$ $\Omega$
[beautiful math coming... please be patient] $\rightarrow$ $\leftarrow$ $\circeq$ $\circlearrowleft$ $\circlearrowright$ $\uparrow$ $\downarrow$ $\circledast$ $\circledcirc$ $\circleddash$ $\circledR$ $\circledS$ $\curlyeqprec$ $\curlyeqsucc$ $\curlyvee$ $\curlywedge$ $\mapsto$ $\curvearrowleft$ $\curvearrowright$