Multi-step Exponent Law Practice
Need some basic practice with exponent laws first?
One-Step Exponent Law Practice
In this exercise you will practice with the exponent laws, all mixed-up.
These problems require the application of
more than one exponent law.
For simpler problems,
see One-Step Exponent Law Practice.
EXPONENT LAWS
Let
$\,x\,,$ $\,y\,,$ $\,m\,,$ and $\,n\,$
be real numbers,
with the following exceptions:
-
a base and exponent cannot simultaneously be zero
(since $\,0^0\,$ is undefined);
-
division by zero is not allowed;
-
for non-integer exponents
(like $\,\frac12\,$ or $\,0.4\,$),
assume that bases are positive.
Then:
$x^mx^n = x^{m+n}$
|
Verbalize:
same base,
things multiplied,
add the exponents
|
$\displaystyle \frac{x^m}{x^n} = x^{m-n}$
|
Verbalize:
same base,
things divided,
subtract the exponents
|
$(x^m)^n = x^{mn}$
|
Verbalize:
something to a power, to a power;
multiply the exponents
|
$(xy)^m = x^my^m$
|
Verbalize:
product to a power;
each factor gets raised to the power
|
$\displaystyle \left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$
|
Verbalize:
fraction to a power;
both numerator and denominator get raised to the power
|
Examples
$\displaystyle
\begin{align}
\cssId{s42}{\left(\frac{1}{x^2}\right)^3}
&\cssId{s43}{= (x^{-2})^3}
\cssId{s44}{= x^{-2\,\cdot\, 3}}\cr
&\cssId{s45}{= x^{-6}}
\cssId{s46}{= x^p}
\end{align}$
where $\,p = -6$
$\displaystyle
\begin{align}
\cssId{s48}{\left(\frac{x^2}{x^3}\right)^5}
&\cssId{s49}{= (x^{2-3})^5}
\cssId{s50}{= (x^{-1})^5}\cr
&\cssId{s51}{= x^{-1\,\cdot\, 5}}
\cssId{s52}{= x^{-5}}
\cssId{s53}{= x^p}
\end{align}
$
where $\,p = -5$
$
\begin{align}
\cssId{s55}{(x^2x^4)^{-1}}\
&\cssId{s56}{= (x^{2+4})^{-1}}
\cssId{s57}{= (x^6)^{-1}}\cr\cr
&\cssId{s58}{= x^{6\,\cdot\, (-1)}}
\cssId{s59}{= x^{-6}}
\cssId{s60}{= x^p}
\end{align}
$
where
$\,p = -6$
$\displaystyle
\begin{align}
\cssId{s62}{\frac{x^2x^{-3}}{x^5}}\
&\cssId{s63}{= \frac{x^{2 + (-3)}}{x^5}}
\cssId{s64}{= \frac{x^{-1}}{x^5}}\cr\cr
&\cssId{s65}{= x^{-1-5}}
\cssId{s66}{= x^{-6}}
\cssId{s67}{= x^p}
\end{align}$
where
$\,p = -6$
$\displaystyle
\begin{align}
\cssId{s69}{\frac{x^2}{x^3x^4}}\
&\cssId{s70}{= \frac{x^2}{x^{3+4}}}
\cssId{s71}{= \frac{x^2}{x^7}}\cr\cr
&\cssId{s72}{= x^{2-7}}
\cssId{s73}{= x^{-5}}
\cssId{s74}{= x^p}
\end{align}$
where
$\,p = -5$
$\displaystyle
\begin{align}
\cssId{s76}{\frac{(x^2)^3}{(x^{-1})^4}}\
&\cssId{s77}{= \frac{x^{2\,\cdot\,3}}{x^{-1\,\cdot\,4}}}
\cssId{s78}{= \frac{x^6}{x^{-4}}}\cr\cr
&\cssId{s79}{= x^{6-(-4)}}
\cssId{s80}{= x^{10}}
\cssId{s81}{= x^p}
\end{align}$
where
$\,p = 10$
Practice