﻿ Basic Arithmetic With Matrices
BASIC ARITHMETIC WITH MATRICES
by Dr. Carol JVF Burns (website creator)
Follow along with the highlighted text while you listen!
Thanks for your support!

Whenever you get a new mathematical object (like matrices),
it's important to develop tools to work with the new object.

In this exercise, you'll learn how to do basic arithmetic operations with matrices:
adding, subtracting, and multiplying by a constant.

Adding and Subtracting Matrices

Matrices can only be added or subtracted when they have the same size.
In this situation, you just add/subtract the corresponding entries.

For example, $$\cssId{s11}{\begin{bmatrix} -2 & 1\cr 0 & 3 \end{bmatrix}} \cssId{s12}{+} \cssId{s13}{\begin{bmatrix} 5 & -4\cr 6 & -7 \end{bmatrix}} \cssId{s14}{=} \cssId{s15}{\begin{bmatrix} -2+5 & 1+(-4)\cr 0+6 & 3+(-7) \end{bmatrix}} \cssId{s16}{=} \cssId{s17}{\begin{bmatrix} 3 & -3\cr 6 & -4 \end{bmatrix}}$$ $$\cssId{s18}{\begin{bmatrix} -2 & 1\cr 0 & 3 \end{bmatrix}} \cssId{s19}{-} \cssId{s20}{\begin{bmatrix} 5 & -4\cr 6 & -7 \end{bmatrix}} \cssId{s21}{=} \cssId{s22}{\begin{bmatrix} -2-5 & 1-(-4)\cr 0-6 & 3-(-7) \end{bmatrix}} \cssId{s23}{=} \cssId{s24}{\begin{bmatrix} -7 & 5\cr -6 & 10 \end{bmatrix}}$$

Precisely, we have:

DEFINITION adding and subtracting matrices
Suppose matrices $\,A\,$ and $\,B\,$ have the same size.

Then, the sum $\,S=A+B\,$ is defined by: $$\cssId{s30}{s_{ij} = a_{ij} + b_{ij}}$$ The difference $\,D=A-B\,$ is defined by: $$\cssId{s32}{d_{ij} = a_{ij} - b_{ij}}$$ In particular, matrices with different sizes cannot be added or subtracted.

WolframAlpha uses braces $\,\{\ \}\,$ to input matrices, not brackets $\,[\ ]\,$.
Then, it displays the matrices (so you can verify your input) using parentheses $\,(\ )\,$.
Get used to this—different academic disciplines and different environments often use different notation.

The screenshot below shows how to input matrices at wolframalpha.com.
Each row also goes inside a pair of braces $\,\{\ \}\,$, with elements separated by commas, like this:   $\,\cssId{s45}{\{-2,1\}}\,$
The rows themselves are also separated by commas, like this:   $\,\cssId{s47}{\{-2,1\}}\ \cssId{s48}{\ ,\ } \cssId{s49}{\{0,3\}}\,$
The entire matrix is enclosed within a pair of braces, like this:   $\,\ \cssId{s51}{\{}\ \cssId{s52}{\{-2,1\}}\cssId{s53}{\ ,\ }\cssId{s54}{\{0,3\}}\ \cssId{s55}{\}}\,$
If you want, cut-and-paste the following input to WolframAlpha to duplicate what you see in the image below:
{ {-2,1} , {0,3} } + { {5,-4} , {6,-7} }

Multiplying a Matrix by a Constant

It is equally easy to multiply a matrix by a constant; each entry gets multiplied by the constant.

For example, $$\cssId{s62}{7} \cssId{s63}{\begin{bmatrix} -2 & 1\cr 0 & 3 \end{bmatrix}} \cssId{s64}{=} \cssId{s65}{\begin{bmatrix} 7(-2) & 7(1)\cr 7(0) & 7(3) \end{bmatrix}} \cssId{s66}{=} \cssId{s67}{\begin{bmatrix} -14 & 7\cr 0 & 21 \end{bmatrix}}$$

Precisely, we have:

DEFINITION multiplying a matrix by a constant
Let $\,M\,$ be a matrix, with members $\,m_{ij}\,$.
Let $\,k\,$ be a real number.

Then, the new matrix $\,kM\,$ has the same size as $\,M\,$;
the member in row $\,i\,$ and column $\,j\,$ of $\ kM\$ is $\ k\,m_{ij}\$.

Note: The real number multiplier is often called a constant or a scalar.

When working with matrices, it's important to distinguish between the real number $\,0\,$ and a zero matrix.
To help with this distinction, we define $\,0_{m\times n}\,$ (zero, with a subscript of $\,m\times n\,$)
to mean the zero matrix of size $\,m\times n\,$.

You can read $\,0_{m\times n}\,$ aloud as ‘the $\,m\,$ by $\,n\,$ zero matrix’.

Thus, if $\,A\,$ is a $\,2\times 3\,$ matrix, then: $$\cssId{s90}{A-A} \cssId{s91}{=} \cssId{s92}{0_{2\times 3}}$$ Or, if $\,A\,$ is a $\,p\times q\,$ matrix, then: $$\cssId{s94}{0A} \cssId{s95}{=} \cssId{s96}{0_{p\times q}}$$

Be aware that many advanced textbooks write simple things like $\,A-A=0,\,$
knowing that the audience has enough mathematical maturity to realize that the zero is really the zero matrix with the same size as $\,A\,$.
However, in this exercise, we will be careful to distinguish between the real number zero, and a zero matrix.

EXAMPLES:
Let   $A = \left[ \begin{smallmatrix} 2 & -1\cr 0 & 3\end{smallmatrix} \right] \,$,   $B = \left[ \begin{smallmatrix} -3 & -5\cr 1 & 0\end{smallmatrix} \right] \,$,   and   $C = \left[ \begin{smallmatrix} 0 & 1 & 1\cr 2 & -1 & 0\end{smallmatrix} \right] \,$.

Then,

\begin{align} \cssId{s109}{A+2B} &\cssId{s110}{=} \cssId{s111}{\begin{bmatrix} 2 & -1\cr 0 & 3 \end{bmatrix}} \cssId{s112}{+} \cssId{s113}{2} \cssId{s114}{\begin{bmatrix} -3 & -5\cr 1 & 0 \end{bmatrix}} \cr\cr &\cssId{s115}{=} \cssId{s116}{\begin{bmatrix} 2 & -1\cr 0 & 3 \end{bmatrix}} \cssId{s117}{+} \cssId{s118}{\begin{bmatrix} -6 & -10\cr 2 & 0 \end{bmatrix}} \cr\cr &\cssId{s119}{=} \cssId{s120}{\begin{bmatrix} -4 & -11\cr 2 & 3 \end{bmatrix}} \end{align}

As a second example, $\,A+C\,$ is not defined, since $\,A\,$ and $\,C\,$ have different sizes.
Master the ideas from this section
by practicing the exercise at the bottom of this page.

When you're done practicing, move on to:
Multiplying Matrices

On this exercise, you will not key in your answer.
However, you can check to see if your answer is correct.
PROBLEM TYPES:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
AVAILABLE MASTERED IN PROGRESS
 (MAX is 21; there are 21 different problem types.)