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ABSTRACT

This dissertation investigates the problem of identifying hidden periodici­
ties in discrete-domain data, with emphasis on identification for the purpose of
prediction. By definition, discrete-domain data is a collection of ordered pairs,

with the property that the time values t{ can be arranged in strictly
increasing order. The data values yi are allowed to come from the set of real nnm-
bers, denoted by R. Implementation of all the techniques discussed herein are in­
corporated throughout the dissertation, using the MATLAB software package.

The dissertation is written as the basis for a textbook, and assumes a math­
ematical background typical of an undergraduate degree in engineering: three
semesters of calculus, introductory courses in linear algebra and statistics, and a
moderate amount of mathematical maturity. Additional information that is essen­
tial for an understanding of the material is included in the appendices.

Periodicity is studied in Chapter 1. The usual definition of periodic functions
(as functions from R to R) is generalized, to provide a viewpoint that favors investi­
gation of periodicities in discrete-domain data. It is verified that functions obeying
this generalized definition satisfy the properties commonly associated with period­
icity. The set of all periods of a periodic function is studied. A reshaping method
for identifying relatively prime periodic components is presented. Important logical
considerations regarding the use of identified periodic components for prediction are
discussed. The chapter closes with an overview of historical contributions in the
search for hidden periodicities.

Chapter 2 develops techniques for fitting a data set with a function. A ‘turn­
ing point’ test for random behavior is developed. If the hypothesis of random behav­
ior cannot be rejected, one may still be able to take advantage of the turning points
in economics data, via an interesting application of a Martingale Algorithm. Linear
and nonlinear least squares approximation techniques are presented for situations
where there are specific conjectured components in the data. Condition numbers
and discrete orthogonal functions are discussed in the context of overcoming nu­
merical difficulties with computer applications. Gradient methods and a genetic
algorithm provide a way to deal with nonlinear least squares approximation. Cubic
spline interpolation is presented as a way to achieve a uniform time list, if necessary.
Discrete Fourier theory and the periodogram are presented as useful tools, partic­
ularly when the data is thought to have unknown periodic components. Efficient
computation of the periodogram via the discrete Fourier transform is discussed.

Chapter 3 discusses nonrecursive mathematical filters, and their correspond­
ing transfer functions. Such filters can be used for removal of noise, and are use­
ful identification tools when the data contains sinusoidal components. An overall
approach to identifying hidden periodicities, together with examples, is given to
conclude the dissertation.
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FLOWCHART

The following flowchart suggests a strategy for analyzing a data set, using the
tools presented in this dissertation. Section 3.4 contains examples illustrating
the application of the procedure presented here.
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CHAPTER 1

PERIODIC FUNCTIONS

The purpose of computing is insight,
not numbers.

R.W. Hamming



1.1 The Purpose of This Dissertation
1

the purpose of
this section

This introductory section gives an informal discussion of the pur­
pose of this dissertation. For this section only, the reader is as­
sumed to have an intuitive understanding of the meaning of fa­
miliar words (like data sei and periodic); precise meaning will be
assigned to these concepts in later sections.

the analyst
has a data set
in hand

This dissertation is written for the person (hereafter called the
analyst), who has a data set in hand, like

t

0
2.0000
4.0000
6.0000
8.0000

10.0000
12.0000
14.0000
16.0000
18.0000
20.0000
22.0000

33.9300
33.5100
35.2900
35.3900
35.0100
36.1700
36.1100
32.0300
34.1200
36.9200
37.3400
37.7600

and who seeks to understand this data, for the primary purpose
of predicting (forecasting) future behavior of the process that gen­
erated the data.
Such a data set is completely described by a finite collection of
ordered pairs {(<,-, &•) | i = 1,..., TV}. For most analysts, these ordered
pairs will be stored in a computer in two columns (lists): a list
of ‘input’ values {tiJ-Lj and a list of corresponding ‘output’ values

ti yi
t2 V2
t3 J/3

tN VN
The letter ‘t’ is used merely because time is a common input; and
the letter ‘j/’ is deeply entrenched in mathematical notation as
denoting output values.
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different
hypotheses
lead to
different
analyses

the hypothesis
to be investigated
in this dissertation

EXAMPLE
the output is
a finite sum
of component
functions

no hope of
recovering the
exact components

Different hypotheses (i.e., assumed truths) by the analyst regard­
ing the nature of the data will lead to different methods for an­
alyzing the data. For example, based on experience or initial
knowledge about the mechanism(s) generating the data, a re­
searcher might be led to the hypothesis that a particular data
set is a random walk [Dghty, 140-142]; or is a realization of a
certain type of stochastic process [B&J]. Such hypotheses would
dictate a particular investigative approach to be followed by the
analyst.

The hypothesis to be investigated in this dissertation is that the
output list is a finite sum of component functions. Particular
emphasis is placed on the situation where at least one component
is periodic. This type of hypothesis is investigated in the next
example.

Consider the schematic on the next page, which illustrates two
periodic components (Pi has period 3, P2 has period 7) and a non­
periodic component (a linear trend, T) that, together with some
noise (TV), sum to yield the data outputs denoted by Y: denote
this by

Px + P2 + T + N = Y .

Although, in this example, the components of Y are known (they
are Px, P2, T, and TV), one must remember that in actuality the an­
alyst only has access to the data outputs Y. Based on Y alone, the
analyst’s hope is to recover information about the components,
and then use this information to predict future values of Y.

It should be noted immediately that the components Pi, P2, T and
N are not unique; for example, any real number K can be used to
write Y as a sum of four components:

component 1 component 2

{P^K) + (K+A) +T + N = Y .

The ‘new’ component Pi - K still has period 3; the ‘new’ compo­
nent P2 + K still has period 7; and these four components still sum
to give Y. Many other combinations are possible. Thus, there
is no hope of recovering the exact components that make up the
output data.
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0.2

0

-0.2

-0.4

15

10

5

0

0.4

+ T (LINEAR TREND)

Pi (PERIOD-3 COMPONENT)

+ P2 (PERIOD-7 COMPONENT)

+ N (NOISE)

= Y (OUTPUT DATA)
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‘known
unknown’

The output list Y just constructed is an example of what will be
referred to, throughout this dissertation, as a known unknown. It
is known because it was constructed by the analyst. However, the
components that make up Y will be assumed to be unknown (to
varying degrees) in order to test various techniques for identifying
components.

CAUTION
the problem of
not knowing
the truth
of a hypothesis

A very simple example is presented next to illustrate some im­
portant logical considerations that must constantly be kept in
mind. Suppose that an analyst is presented with the (unrealisti­
cally small) data set

01.2/1) = (T.l),

02,2/2) = (2T, 2),
03,2/3)= (3T, 3),
(t412/4)= (4T.4)

This data is stored in the computer as two columns of numbers:

T 1
2T 2
3T 3
4T 4

Here, T is any positive number; the particular value of T is unim­
portant to the current discussion, except for the consequence that
the data is equally-spaced. This data set is graphed below.

5

0 T 2T 3T 4T
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Unknown to the analyst, this data was generated as the sum of a
2-cycle and a 3-cycle,

( 3, 6, 3, 6, 3, 6, 3, 6, 3, ...)
+ (-2, -4, 0, -2, -4, 0, -2, -4, 0, ...)
= ( 1, 2, 3, 4, -1, 6, 1, 2, 3, ...) ,

producing a 6-cycle; but not even one cycle of the resulting 6-
cycle has yet been observed by the analyst. Now that you are
privy to this component information, forget it, and continue with
the analysis.

Based on the four pieces of observed data (1,2,3,4), you, as thefirst hypothesis
analyst, hope to predict future behavior. Thus, you make an
initial hypothesis:
HYPOTHESIS #1: The data is being generated by the linear
function yn = n.
Based on this hypothesis, you predict the next data point:

(ys)predicted — 5 •

When the next data value, —1, becomes available, you have learned
something: your hypothesis, at least in its ‘purest’ form, was in­
correct.

Let’s look at the logic underlying this conclusion. Remember that
the mathematical sentence

underlying
logic

‘If A, then B’ (SI)

is logically equivalent to its contrapositive,

‘If not B, then not A’ . (S2)

For ease of notation, denote the sentence ‘If A, then B’ by SI; and
denote the sentence ‘If not B, then not A' by S2. The fact that
SI is logically equivalent to S2 means that SI and S2 always have
the same truth values: if Si is true, so is S2; if SI is false, so is S2;
if S2 is true, so is SI; and if S2 is false, so is SI. (See Appendix 1
for a discussion of mathematical logic.)
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The sentence

IF the data set is generated by yn = n, THEN y5 = 5

is a true mathematical sentence. Therefore, its contrapositive,

IF y5 / 5, THEN the data set is not generated by yn = n

is also true. Since y5 / 5 (is true), it is concluded that yn = n is
not the correct generator for the data.

second hypothesis Since hypothesis #1 is incorrect, it is discarded, and a new hy­
pothesis is sought. The analyst is still struck by the linearity of
the first four data values, and decides that this fifth data value
is an anomaly—a mistake—an outlier—caused perhaps by some
temporary outside influence. Thus, the hypothesis is only slightly
modified:
HYPOTHESIS #2: The data set is being generated by the func­
tion yn = n, for all n / 5.
Under this slightly modified hypothesis, the next data value is
predicted: (^predicted = 6. When the next data value is observed,
one indeed sees that y6 = 6. This new information supports hy­
pothesis #2. That is, at this point, there is no reason to reject
hypothesis #2. However, the analyst cannot conclude that hy­
pothesis is true. It might be (as, indeed it is) that y6 equals 6
for reasons other than hypothesis being true.

Keeping hypothesis #2, the analyst predicts that (^predicted = 7.
Upon observing y7 = 1, however, hypothesis #2 must be discarded.

third hypothesis Suppose that the analyst is fortunate enough to make the follow­
ing conjecture (educated guess):
HYPOTHESIS #3: The output list is a sum of a 2-cycle and a
3-cycle.
Such a sum must repeat itself every six entries. Consequently,
if hypothesis #3 is made after having observed the first six out­
puts (1,2,3,4,-1,6), then no analysis needs to be done; the analyst
immediately concludes that these six outputs must repeat them­
selves:

(1,2,3,4,-1,6,1,2,3,4,-1,6,...) .
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basic reshaping
techniques to
gain further insight
into components

Although future values have been correctly predicted in this case,
the analyst may still desire more information about the compo­
nents making up the output list. Some basic reshaping techniques
(discussed in section 1.3) can be used on the first six pieces of data
to find two components that can be used for prediction. The tech­
nique is illustrated next:

• Let
Y = (1,2,3,4,—1,6) .

• Find the mean (average) of the entries in Y, and denote it by

"y: 1
/■Y = -(1 + 2 + 3 + 4 -f- (—1) +6) = 2.5 .

• Construct a ‘mean-zero’ output list Yo by subtracting py from
each entry in Y:

Yo = (1, 2, 3, 4, -1, 6)
- ( 2.5, 2.5, 2.5, 2.5, 2.5, 2.5)

= (-1-5, -■5, •5, 1.5, -3.5, 3.5)

• ‘Reshape’ Yo to test for a period-2 component, and take the
mean of each column. This gives the mean-zero 2-component,
called cl below.

cl

-1.5000 -0.5000
0.5000 1.5000

-3.5000 3.5000

-1.5000 1.5000

• ‘Reshape’ Yo to test for a period-3 component, and take the
mean of each column. This gives the mean-zero 3-component,
called c2 below.

-1.5000 -0.5000 0.5000
1.5000 -3.5000 3.5000

c2 = o -2 2
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• If Y is indeed the sum of a 2-cycle and a 3-cycle, then adding
/xY to cl and c2 must give back Y, and it does:

(-1.5, 1.5, -1.5, 1.5, -1.5, 1.5)
+ ( o, -2, 2, o, -2, 2)
+ ( 2.5, 2.5, 2.5, 2.5, 2.5, 2.5)
= ( 1. 2, 3, 4, -1, 6)

only 4 outputs
need be observed
for predictive
purposes

It is interesting to note that if the output list is truly a sum of a 2-
cycle and a 3-cycle, then once only 4 outputs have been observed,
future behavior can be predicted. See section 1.5 for details.

EXAMPLE
a beautiful fit
does NOT mean
that the
components
are correct!

Here is a second example, more realistic in terms of data set size
than the first, which also emphasizes the problem of not knowing
if a hypothesis is true.
Suppose that an analyst is presented with the data set shown
below:

10

Jic
41-------------- i--------------1-------------- 1-------------- 1---------------------

0 2 4 6 8 10

the
known unknown

Unknown to the analyst, this data set was generated by the con­
tinuous function

y(t) = 3 sin(—) + .It + 5 + < noise > ,

sampled at increments of .1 on the interval [0,10].

first hypothesis The data certainly looks like a piece of a parabola, and the analyst
may make the initial hypothesis:
HYPOTHESIS #1: h^t) = b0 + b1t + b2t2 .
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A beautiful fit
does NOT assure
that the hypothesis
is correct!

the moral

Motivated by this hypothesis, values of b0, and b2 are sought
so that /ii(t) ‘fits’ the data in the best least-squares sense (see sec­
tion 2.2). Having done so, the analyst finds that the agreement
between (the hypothesized data generator) and y(i) (the ac­
tual data) looks beautiful on the original data interval [0,10]. How­
ever, when hi(t) is used to forecast behavior on the interval [10,15],
a comparison with j/(f) shows that the fit is terrible.

The hypothesized components led to a ‘fit’ that was beautiful on
the data currently available to the analyst. However, using this
‘fit’ to predict future values led to huge errors. What happened?
It is indeed true that IF the hypothesis is correct, THEN the fit
will be beautiful. However, the ‘fit’ may be beautiful for reasons
other than the hypothesis being correct.
In this case, the Weierstrass Approximation Theorem [Bar, p.
172] can be cited as the reason that the ‘fit’ is beautiful. This
theorem states that any continuous function defined on a closed
interval can be uniformly approximated by polynomials; conse­
quently, a good ‘fit’ can always be obtained, if a sufficiently high
degree polynomial is used.

The moral is:
A ‘beautiful fit’ never assures the analyst that the conjectured com­
ponents are correct.
The fit may be beautiful for reasons other than the hypothesis
being correct, potentially rendering the hypothesized components
useless for predictive purposes.

R.W. Hamming, author of several books in numerical analysis
and digital filters, emphasizes that the purpose of computing is
insight, not numbers. The analyst must always be attentive to
the possibility that the hypotheses are not correct.
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1.2 Notation

Introduction In this section, notation is developed that will be used throughout
the dissertation.

data sets Many data sets consist of a collection of ordered pairs of real num­
bers: each ordered pair (t,y) in the collection contains an input to
some data-generation process, denoted by t, and its corresponding
output from the data-generation process, denoted by y.
In this dissertation, the word ‘time’ is used to refer to inputs.

The data sets to be studied in this dissertation have the additional
property that the times can be listed', and, they can be listed in
increasing order. This leads to the definition of discrete-domain
data, stated next:

DEFINITION
discrete-domain
data set

A set of ordered pairs with real-number entries is called a discrete­
domain data set, if the following conditions hold:
• The total number of ordered pairs in the set is either finite,

or countably infinite (i.e., can be put in a one-to-one cor­
respondence with the positive integers). Thus, the set can
be notated as {(ii,yt))ili, if it is finite; or if itis
countably infinite.

• The time values, {t»}f=i°roo), can be arranged in strictly in­
creasing order. In particular, the time values are all distinct.

MATLAB
implementation

MATLAB commands for checking that the time values in a finite
data set are distinct, and re-ordering the ordered pairs so that
the times increase, are provided at the end of this section.

a discrete-domain
data set
can be described
as a pair of lists

Every discrete-domain data set can be described as a pair of lists.
These lists may be vertical in orientation:

ti yi
t2 2/2
t3 2/3

Or, the lists may be horizontal in orientation:

and (yi,y2,y3,...) •

In both orientations, time always corresponds to output y*;  that
is, the pair (<*,  y*)  is an element of the data set.
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(1,5,7.1,100)

Both horizontal and vertical orientations will be used in this dis­
sertation, the choice depending on which orientation is best suited
to a particular situation.

In what follows, the idea of a ‘list of numbers’ is formalized, and
properties of lists are discussed. For ease of notation, a horizontal
orientation for the lists is used.

lists This dissertation will investigate lists of real numbers, like

• • • ,<2v) (1)

or
(yi,i/2,y3,...) (2)

or
(... ,Z-2,*-l,*0,*l,*2>---)  • (3)

entry;
element;
member

The list may be finite or infinite. In a horizontal orientation, the
numbers in the list are separated by commas, and enclosed in
parentheses. A number in a list is called an entry, an element, or
a member of the list.

time lists The letter used in a list will influence the interpretation of the
members in the list.
When the letter ‘f is used, the list is assumed to consist of in­
puts (times), and is called a time list. Time lists have an ad­
ditional requirement: the times must (strictly) increase as one
moves through the list, from left to right in a horizontal orienta­
tion, or from top to bottom in a vertical orientation.
The time values {i»}-=1oroo) in a discrete-domain data set can be
made into a time list.
The list in (1) is often abbreviated as (ti)^ .

examples and
non-examples of
time lists

Here are some examples of valid time lists:

(1,2,3,...)
, , 1 n 1 2 , .(..., 1, 2’°’3’3’1’"‘)



12

The following lists do not meet the special requirement of a time
list:

(1,1,2,2,3,3,...)
(0,1,3,2,4)

The rational numbers are countable, so they can be listed. Note,
however, that they cannot be listed in increasing order. Thus,
the rational numbers cannot form a time list.

output lists When the letter ly is used in a list, the list is assumed to consist
of outputs, and is called an output list.
Letters other than t and y are used when the interpretation of the
list is unimportant.

i, j, k, m, n,
M, N
denote
integer values

length of

When subscripts are used in a list, they must be integers, and
must increase as one moves through the list from left to right (or
from top to bottom). When the variables i, j, k, m, n, M and N
are used in this dissertation, it is assumed that they are integer
variables, unless otherwise specified. (In the proper context, i is
used to denote >/-r.)

The total number of entries in a finite list is referred to as the
a list length of the list. Thus, for example, the list (2,4,6,8,10) has length

5, not, say, length 10 - 2.
The letters lN' and lM' are often used for the last entry in a finite
list. Note that the list (zi,z2,z3,... , zjv) has length N, whereas the
list (z0, zi, z2, z3,..., zN) (where the subscript begins at 0) has length
N + l.

The subscripts in a list need not begin at 1. In the list

(Zfc, *fc+l,  **+2,  • •• > ZAf) , (4\

where the increment in the subscripts is 1, the length of the list
is

M-(fc-l) = M-fc + l.

The list in (4) is abbreviated as (z,)^t.
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and

If the increment in the subscripts is j > 1, the list becomes

(-i> Zk+j, Zk+2j> Zk+3j, •••, Zjlf)

where M is necessarily of the form k + Nj for some positive integer
N. The length of this list is

M — (k — j) M — k x
j

(y.)£i When a list is infinite, as in (2) and (3), the ellipsis ‘... ’ indicates
that the entries continue ad infinitum. The lists in (2) and (3)
are abbreviated as (i/,)^1 and respectively.

simpler notation
for lists

For any list, the notation (z,) (without any indexing) is used in
the following situations:
• if it is unimportant whether the list is finite or infinite; or,
• if the particular nature of the list is understood from context.

distinguish
the list fa)
from
an element Zj

In all cases, it is important to distinguish the list, (z.), from a par­
ticular element in the list, z,-. Lists are often denoted by boldface
letters, for example, z = (z,).

data point,
(tk,yk);
data value, yt

Sometimes it is necessary to focus attention on a particular in­
put/output pair, Such a pair is called a data point. The
output j/k is referred to as the data value (at time ij).

the phrase:
'ith entry
in a list’

In a list that has a first entry (like (1) and (2), but not (3)), the
phrase lthe »th entry in a UsV always refers to the number that
occupies the ith slot from the left (or top) in the list, as the next
example illustrates:

The fifth entry in the list (ya.^.ys.ys.yT,.--) is yr.

operations
on lists

All operations on lists Eire done component-wise. For example,
given two lists z and w, each of length TV, the sum z + w is also
a list of length TV, and the ith entry in z + w is the sum of the ith
entry in z and the ith entry in w.
For example,

(1,2,3,4,5) + (5,4,3,2,1) = (6,6,6,6,6)

(z2, *4>  *e)  + (u>iIw2, w3) = (z2 + W1, Z4 4- w2 , ze + w3) .
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Whenever lists that are ‘infinite in both directions’ are summed,
the alignment of the lists will determine the entries that are to be
added: for example,

(..., 1, 2, 1, 2, 1, 2, 1, 2, ...)

+ (..., o, 2, 3, 4, o, 2, 3, 4, ...)

= (..., 1, 4, 4, 6, 1, 4, 4, 6, ...)

scaling of
a list

The scaling of a list by a constant k is defined by

*(*.)  :=(**,).

The symbol ‘ := ’ just used emphasizes that the equality is by def­
inition.

equality of lists The order in a list is important: therefore, two lists z and w are
equal if and only if the ith entry in z equals the »th entry in w, for
all i.
No attempt is made to define equality of lists that are infinite in
both directions, as in (3).

uniform
time list

It is very common for time lists to have the property that their
entries Eire equally-spaced. This means that there is a constant
T > 0 such that successive entries tk and tt+i in the list always
have difference T, that is,

tk+l - tk —T .

A time list with this property is referred to as a uniform time list.

MATLAB
implementation

MATLAB commands to check for a uniform time list are provided
at the end of this section.

changing
time scales

Let s denote a starting time and let T > 0. The uniform time list

(5, s + T, S + 2T, ..., s + (i-l)T........ s + (7V-~ 1)7, ...)
t',b entry Nih entry

can be easily converted to a uniform time list of the form

(1.2,3,...)

by use of the transformation

i - s) + 1 .
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That is, the ith member of the initial time list maps to the positive
integer i.
The symbol W is read as ‘maps to\ and means that the element
t is sent to the element - s) +1.
This transformation was found by writing down the equation of
the line shown below:

transforming
back

It is equally easy to transform the list (1,2,3,...) back into a list
with starting time s, and uniform spacing T. Indeed, the trans­
formation

k w T(jt - 1) + s

maps the list

to the list

(1,2,3,... .......N,...)

(s, s + T, s + 2T, ... , s + (i-l)T, , s + (tf-l)T), ...) .

This transformation was found by writing down the equation of
the line shown below:

EQUATION OF LINE:

t - s = T(k - 1)

--- 1--- 1-
12 3

> k

SLOPE = T
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MATLAB
implementation

MATLAB commands for converting any finite uniform time list
to the list (1,2,3,..., N)‘, and for converting (1,2,3,... ,N) back to a
time list with starting value s and spacing T, are provided at the
end of this section.

If an output list (yi,y2.--- ,ijn) corresponds to a uniform time list,
then it has been shown that this associated time list can always
be labeled (1,2,3,... ,N). Consequently, there is often no need to
‘carry around’ the associated time list. In such cases, the time
list is often suppressed, and only the output list is given.

functions Functions are an extremely useful mathematical tool for working
with input-output relationships that are characterized by each in­
put having exactly one associated output. A convenient function
notation that will be used throughout this dissertation is intro­
duced next.

DEFINITION
function;
function notation;

A function f is a rule that associates to each input x a unique
output denoted by f(x). The set of inputs to f is called the domain
of f and is denoted by T>(f). The notation

f-77(f)—^B;
domain T>(f);
codomain B;
range 71(f)

f-.V(f)-^B

symbolically indicates the rule /, the domain 77(f), and a set B
that contains the outputs of f. The set B is called the codomain
of f.
The actual output set of f is called the range off and is denoted by
71(f). The range is found by letting f act on all domain elements,
and forming a set from the resulting function values; this action
is sometimes indicated by

ft(/) = {/(*)  1 *e2>(/)}.

In the notation f: 77(f) -» B, it must be that 71(f) C B.

the difference
between
B and 71(f)

The set B (the codomain of f) gives information about the type of
outputs that the rule f generates. The set 71(f) gives information
about the actual outputs that the rule f generates. For example,
consider the function described by

/: {x 11 < a: < 3} —* R, f(x) = x2 .
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Here, the fact that the codomain is R (where R denotes the set of
real numbers), implies that the outputs from f are real numbers.
To find the range of /, 7i(/), one must see precisely what outputs
are generated as the squaring function acts on all elements in the
domain of f:

K(/) = {/(®) I 1 < x < 3} = {x2 | 1 < x < 3} = {y | 1 < y < 9} .

Note that the function notation /: !>(/) —> B does not include
information about how the outputs are related to the inputs. Such
information must be provided separately.
It is important to emphasize that f is the name of the function-,
and f(x) is the output of f corresponding to the input x.

DEFINITION A function f is called a discrete-domain function if its domain
discrete-domain consists of entries from a time list. Thus, the domain of a discrete-
funciion domain function is a set of time values (either finite or countably

infinite), that can be listed in strictly increasing order.

In particular, a discrete-domain function has the property that
its domain cannot contain any interval of real numbers.

EXAMPLE
using
function notation

The function f: [1,10] -» R defined by f(x) = x2 has the graph
shown below. A related discrete-domain function g: {1,2,..., 10} -*
R defined by g(x) = x2 is also graphed.
Note that 'Jl(f') = [1,100], and 'R.(g') = {I2,22,32,..., 102}.

real-valued ■
function

In this dissertation, the codomain set will always be the real or
complex numbers. If the codomain is R, then the function is called
a real-valued function. If, in addition, the domain is a subset of R,
then the function is called a real-valued function of a real variable.
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NOTATION
used with
functions

The following notation is commonly used in connection with func­
tions:

is called a half-open interval.

Z, integers The symbol Z denotes the set of integers:

Z:= {...,-3,-2,-1,0,1,2,3,...} .

Z+,
positive integers

The symbol Z+ denotes the set of positive integers:

Z+ := {1,2,3,...} .

More generally, the superscript ‘ ’ always denotes the positive
(strictly greater than zero) elements from a specified set.

Q,
rational numbers

The symbol Q denotes the set of rational numbers; i.e., the num­
bers that are expressible as a Quotient of integers (with nonzero
denominator).

c,
complex numbers

The symbol C denotes the set of complex numbers, i.e., those
numbers that can be written in the form a + bi, where a and 6 are
real numbers, and i := a/-T. (Many engineers use j to denote y^T,
since i is reserved for electrical current.)

interval notation There is a convenient notation for intervals of real numbers. Let
a and b be real numbers, with a < b.

(a,b),
open interval

An interval that does not include either endpoint, like

(a, b) := {x | a < x < 6} ,

is called an open interval.

[«> 6L
closed interval

An interval that includes both endpoints, like

[a, 6] := {x | a < x < 6} ,

is called a closed interval.

(a, 6], [a, 6),
half-open intervals

An interval that includes exactly one endpoint, like

(a,t] := {z I a < x < 6} or [a, 6) := {x | a < x < 6} ,
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infinite intervals Infinite intervals can be accommodated by using the symbol ‘oo’
(‘infinity’), such as

[a,oo) := {i | x > a} .

every
discrete-domain
data set
has an
associated
discrete-domain
function

Observe that every discrete-domain data set {(/,-, 3/.-)}i=i°roo'> is nat­
urally associated with a discrete-domain function f that maps
each input t,- to the value y,-, i.e., /(/,) = y,-.
Thus, all discussions concerning discrete-domain data sets can be
rephrased in terms of discrete-domain functions, if it is convenient
to do so.

discrete signal There are various phrases used in the existing literature that one
should be aware of.
In communications and digital systems engineering, the phrase
discrete signal usually refers to a data set associated with a func­
tion that has, as its domain, the entries from a time list. The
codomain may be any subset of R.

digital signal A digital signal is a special type of discrete signal, where not only
the domain, but also the codomain, must consist of entries from
a time list.
Thus, both discrete and digital signals are ‘sampled in time’.
However, a discrete signal has the potential of taking on values in
an interval; whereas a digital signal may only take its values from
a time list. The difference is further clarified in the next example.

EXAMPLE
discrete signal
versus
digital signal

The data set associated with a function f: {1,2,3...} —► [0,oo) is a
discrete signal, but not a digital signal, because f has the potential
of taking on values in an interval. The data set associated with
a function g: {1,2,3...} —♦ {0,0.01,0.02,0.03,...} is a digital signal,
because g only has the potential of taking on values from a time
list.

In time series analysis and statistical literature, a time series is
any list of observations generated sequentially in time, where there
is thought to be a dependence between the observations and where
the nature of this dependence is of interest.

time series
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extending io R
A

To conclude this section on notation, observe that any real-valued
function f defined on a proper subset of R can always be extended
to a function fe defined on R, by defining fe to be zero for any
input not in That is, define

_f/(z) for x G P(/)
Jc[X) 'IO for x i .

Whenever the notation fe is used in this dissertation, it will denote
this particular extension of a function f to R.
A function and its extension to R are illustrated below.

MATLAB
implementation

MATLAB (‘MATrix LABoratory’) is a software package for nu­
meric computation that has become quite popular in academia
because of its powerful capabilities and ease of use. MATLAB
commands will be used throughout this dissertation to implement
the techniques discussed herein.
All MATLAB software given in this dissertation was created us­
ing PC-MATLAB for MS-DOS Personal Computer 286 users,
Version 3.5k.
The reader is assumed to be a competent MATLAB user. How­
ever, as a convenience to the reader, the MATLAB commands
used are reviewed on their first appearance. Examples are pro­
vided to illustrate the command sequences.
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PURPOSE

REQUIRED
INPUTS

MATLAB
COMMANDS
re-ordering
the data set
and checking for
repeat time values

MATLAB IMPLEMENTATION

• To check that the time values in a data set are arranged in in­
creasing order; if not, an appropriate rearrangement is made.

• To locate any repeated time values in a data set.

• To check for a uniform time list.

• To supply an alternate indexing of a uniform list: if the uni­
form list is of length N, it can alternately be indexed by

• To supply an alternate indexing of the list (1,... ,N): if s de­
notes a desired starting time and T denotes a desired positive
uniform spacing, then the alternate list

(s.s + T, ... ,s + (AT-l)T)

is produced.

The data set being investigated must be contained in an N x 2
matrix, denoted here by z. The first column of z contains the time
values; the second column contains the corresponding outputs.

z =
ti yi
t2 y2
*3 ya

The positive integer N denotes the number of ordered pairs in the
data set.

The commands listed on the following page are used to re-order
the ordered pairs, so that the resulting time values are in increas­
ing order. The resulting (re-ordered) matrix replaces the original
matrix.
Then, locations of any repeated time values in the re-ordered
matrix are given.
The lines are numbered for easy reference in the discussion that
follows.
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1) t = z(:,l);
2) y=z(:,2);
3) [t,i] = sort(t);
4) y = y(i);
5) z = [t y];
6) for j = 1:(length(t)-l),
7) if t(j) == t(j+l),
8) j
9) end
10) end

line 1 line 1: The first column of z is named t. The colon operator ‘’
is used here to denote all the rows of the matrix z. The semicolon
‘’ at the end of the line suppresses MATLAB echoing.

line 2 line 2: The second column of z is named y.

line 3 line 3: The entries of t are sorted in ascending order; the resulting
column vector is again denoted by t. The list i contains the re­
ordering information, and is used next to correspondingly re-order
the entries in y.

line 4 line 4: The entries in y are re-arranged to coincide with the new
arrangement in t. This re-arrangement of y is again denoted by
y-

line 5 line 5: The original matrix z is replaced by the re-ordered matrix.

lines 6-10 lines 6-10: If entries j and j+1 of the (re-ordered) list t are iden­
tical, then the value j is returned. The analyst can then make
appropriate adjustments to the data set.
If desired, lines 6-10 could be stored in an m-file, say, chkfdup.m
(check for duplicates). Then, lines 6-10 would be replaced by the
single command, chkfdup.

checking for a
uniform time list

Continuing the commands above, the adjusted list t is checked,
to see if it is a uniform time list. If not, the positions of ‘errant’
time values are returned in the list err.
11) d = diff(t);
12) p = ( ones(d)*d(l)  "= d );
13) err = find(p);
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line 11 line 11: The vector d contains the successive differences of the
entries in t. That is,

d(l) = t2-ti
d(2) = t3 -12

If t is uniform, then all the entries in d are identical; and if all the
entries in d are identical, then t is uniform.

line 12 line 12: The list ones(d)*d(l)  has the same size as d, with all
entries equal to d(l). Instead of d(l), the analyst may choose to
use d(j) for values of j greater than 1.
Via the command ‘( ones(d)*d(l)  "= d )’, the list ones(d)*d(l)  is
compared to the list d.
If the relation ‘ones(d)*d(l)  "= d’ is TRUE, then a value of ‘1’ is
returned in the list p. At these positions, a spacing different than
the spacing between t2 and ti is encountered.
If the relation ‘ones(d)*d(l)  "= d’ is FALSE, then a value of ‘0’ is
returned in the list p.

line 13 line 13: The MATLAB command ‘find’ locates the nonzero en­
tries in a matrix. Each entry in p is either ‘1’ or ‘O’; therefore,
the locations of the ‘1’ entries in p are recorded in err.

alternate
indexing

The command
(l:length(t))';
produces a vertical list of the positive integers 1,2,3,...,!, where
I = length(t).
Given a list t = (1,2,3,...,I), the command
resp_t = (s : T : s+(length(t)-l)*T  )'; 7, ‘resp’ is for ‘respace’
produces a vertical list of length I, starting at s and with uniform
spacing T.
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EXAMPLE

z
z

t =

i =

z ■

chkfdup

j =

11.0000
14.0000
12.1000
12.9000
10.0000
12.0000
14.9000
16.0000

5
1
3
6
4
2
7
8

10.000011.0000
12.1000
12.0000
12.9000
14.0000
14.9000
16.0000

y
z
- y(i);
- [t y]

0.5000
2.0000
1.0000
1.5000

0
1.0000
2.4000
3.0000

0
0.5000
1.0000
1.0000
1.5000
2.0000
2.4000
3.0000

0
0.5000
1.0000
1.0000
1.5000
2.0000
2.4000
3.0000

t
y[t, i]

- [.5 11; 2 14; 1 12.1; 1.5 12.9; 0 10; 1 12; 2.4 14.9; 3 16]

The following diary of an actual MATLAB session illustrates the
command sequences just discussed.

=■ z(s,i);
= z(:,2);

sort(t)

3
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% the analyst decides to delete row 3 of z
z(3,:) = [];
% let t be the first column of the adjusted data set
t = z(:,l);
d = diff(t)

d =
0.5000
0.5000
0.5000
0.5000
0.4000
0.6000

p = ( ones(d)*d(l)  -= d)

P =

err = find(p)

0
0
0
0
1
1

err =

5
6

% the analyst observes non-uniform spacing in lines 5-6, and 6
% re-index t with positive integers
tnew = (l:length(t))'

tnew =

1
2
3
4
5
6
7

% reindex tnew with s = 0, T = .5
tnew = (0:.5:0+(length(tnew)-l)*(.5) )'

tnew “
0

0.5000
1.0000
1.5000
2.0000
2.5000
3.0000

7 of Z
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1.3 Periodicity

Introduction

Introduction to Periodic Functions

In this section, some basic properties of periodic functions are
carefully established, from a viewpoint that favors investigation of
periodicities in discrete-domain data. The next section addresses
more delicate properties of periodic functions.
Roughly, a periodic function is one with values that repeat some
basic pattern. The graphs of two periodic functions are shown
below.

2

1.5 - ////■1 -

0.5 -

_1_

1 2
_1_

30°1

3

2

10

4

The usual definition of a periodic function is adapted, as follows,
to better suit the investigation of periodicities in discrete-domain
data:

DEFINITION
period p;
periodic function

Let f be a real-valued function, with £>(/) c R.
The function f has a period p, where p is a real number, if and
only if the domain of f contains both x + p and x - p whenever it
contains x, and if

/(x + p) = f(x-p) = f(x)

for all x G
A function f is periodic if and only if it has a nonzero period.

x±p The symbol ‘±’ is read as ‘plus or minus’, and the abbreviation
lx ± p’ is used for lx + p or x - p’. Similarly, lf(x ± p)’ is shorthand
for lf(x + p) or f(x - p)\
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some immediate
consequences of
the definition

every function
has period 0

symmetry in
the definition;
if f has a
nonzero period,
then it has
a positive period

a constant
function has
all periods

EXAMPLE
a function
with rational
number periods

The requirement that both x + p and x — p be in the domain of f is
essential. It assures that one can always move both to the right
and to the left in the domain of f. Without this requirement,
it is possible to have ‘functions with a nonzero period’ that no
reasonable person would want to call periodic, as illustrated in a
later example.

Here are some immediate consequences of the definition just given:

Every function has period 0, since f(x ± 0) = /(z) for all x G P(/).

Whenever a function f has a period p, it also has a period -p.
This is a consequence of the symmetry in the definition. Thus,
if a function f has any nonzero period, then it necessarily has a
positive period.

A constant function f: R -+ R has all periods, since for all real
numbers x and p, f(x ± p) = f(x).

Define g: R —► R by

»w={J for x g Q
for x £ Q .

Every rational number is a period of this function, and these are
the only periods. To see this, argue as follows:
Let p be any rational number. Then,

x g Q => x ± p G Q => 1 = g(x) = g(x ± p) ; and
i^Q=>x±p{JQ => 0 = g(x) = g(x±p) ,

which shows that every rational number is a period of g. The
argument used the fact that a sum of rational numbers is rational;
and the sum of a rational and irrational number is irrational.
To see that no irrational number is a period, let p be any irrational
number, and choose x := —p. Thus, x is irrational, so g(x) = 0.
However, i + p = -p + p = 0is rational, so g(x + p) = 1. Thus,
g^x) = g(x + p) does not hold for all x, so the irrational number p is
not a period of g.
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EXAMPLE
a function with
period 2

The discrete-domain function f graphed below has period 2. Ob­
serve that it also has periods 2fc for all integers k.

building new The next result gives a way to build ‘new’ periodic functions from
periodic functions functions with a common domain and a common period.

LEMMA 1
sums,
scalar multiples,
and products of
functions with
a period p

Let f and g be functions with common domain T> and a common
period p. Then the functions f±g, fg, and kf (for all real numbers
fc) also have a period p. If g(x) / 0 for all x G D, then hets a period
P-

PROOF Recall that the functions f±g, fg, kf and j are defined by:

(M </)(*)  == f(x)±g(x)
■= f(x)-g(x)

(fc/)(r) := k ■ f(x)

g g(x)

Now, for every x e T>,

(J + g)(x ± p) “ f(x ± p) + g(x ± p)
= / (*)  + g(x)
:= (/ + $)(®) •

This shows that f + g also has a period p. The remaining cases
are similar. |
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Lemma 1 holds
for all finite
sums and
products

By induction, it follows easily that Lemma 1 also holds for all
finite sums and products.
For example, suppose that functions /, g and h have common
domain T> and a common period p. Then, one application of the
lemma shows that f+g has a period p; a second application shows
that (f + g) 4- h has a period p.

If a pattern repeats itself on an interval of length p, then it neces­
sarily repeats itself on intervals of length 2p, 3p, 4p,... . This idea
is formalized next.

LEMMA 2
any multiple
of a period
is also a period

If a function f has a period p, then it also has periods kp for k e Z.
In particular, whenever x e V(f), then so are x + kp, k G Z.

PROOF
a typical
induction
argument

The proof proceeds by induction. Let S(k) be the statement

‘ f has a period kp ’ .

The function f has period 0 • p = 0, since f(x ± 0) = f(x) for all
x G Thus, S(0) is true. In what follows, it is shown that
whenever S(k) is true (for k > 0), then S(k 4- 1) is also true. Since
-p is a period of f whenever p is, this will complete the proof.
For induction, suppose that f has period kp (i.e., S(k) is true).
Then,

x e P(/) => x ± kp G T>(f) (J has a period kp)
==> (x ± kp) ± p G T>(f) (J has a period p)

In particular, both x 4- (fc + l)p and x - (k 4- l)p are in T>(f). Further­
more,

f(x) = f(x 4- kp) = f(x - kp) (J has period fcp)
= /((x 4- kp) + p)= /((x - kp) - p) (f has a period p)
= + (k 4- l)p) = f(x — (fc + l)p) .

It has been shown that whenever x G V(J), so are x ± (k 4- l)p, and
f(x) = f(x ± (k 4- l)p). Thus, f has a period (k 4- l)p. Therefore,
S(k 4-1) is true. |
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if f has a period p, apart is |p| must have identical function values.
LEMMA 3 Let f have a period p. Any two domain elements whose distance

PERIOD 3; TAKE I:=(l,4)

then domain
elements
|p| apart
have identical
function values

Whenever two domain elements are any multiple of |p| apart, then
they must have identical function values.

PROOF Suppose that f has a period p. Let x and y be in the domain of
/, with |r - y| = |p|. Switching names, if necessary, suppose that
x > y.
If p > 0, then x = y + p, and so f(x) = f(y + p) = /(y).
If p < 0, then y = x + p, and so /(y) = f(x + p) = /(x).
In either case, f(x) = f(y).

------------------- •------------- 1-------------------------- p > 0
y x=y+p

------------------- 1------------- 1------------------—------ p < 0
y = x + p x

By the previous lemma, f also has periods kp, for all k e Z. So if
|z - y| = |Jbp|, then an application of the result just proved shows
that /(x) = /(y). |

The next lemma shows that if a function has a positive period p,
then on any half-open interval of length p, the function must take
on all of its function values. Thus, there is no ‘natural starting
place’ for the repeating pattern that the function exhibits.
The sketch below illustrates that a function with a positive period
p may not take on all its function values on an open interval of
length p. It is interesting to note that this is a ‘fault’ of the
definition of the length of an interval; the intervals (a, 6), [a, 6],
[a, 6) and (a, 6] all have the same length.

x x

X X

X X

--------- (—4—}—4—1------------------
123456
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LEMMA 4
a function with a
positive period p
takes on all
its function values
on any
half-open interval
of length p

Let f have a positive period p. On any half-open interval of length
p, f must take on all the values in its range.
On any interval that contains a half-open interval of length p, f
must take on all its output values.

PROOF Let f have a positive period p, and let I be any half-open interval
of length p. Thus, I is of the form (a, 6] or [a, 6), where b - a = p.
Suppose, for contradiction, that there is an output of f which is
not assumed in /; that is, suppose there exists y e 'R.(f') for which
there is no x g (P(/) O I) with f(x) = y. Since y G ^(/), there must
exist x G "P(/) with y = f(x). Write x = x + np for some x g I, n g Z.
(To see that this is always possible, merely place enough intervals
of length I end-to-end so that they eventually cover x. See the
sketch below.) Since x is in the domain of /, and the distance
from x to x is a multiple of p, x is also in 2>(/). Furthermore,

y = /(i) = /(« + n-P)
= f(x) >

yielding the desired contradiction. |

investigating a
different definition
for a periodic
function

It is tempting to simplify the definition of a periodic function as
follows:
Proposed Definition: The function f has a period p if the domain
of f contains z + p whenever it contains x, and if

/(x + p) = /(i)

for all x G 'D(f).
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With this ‘proposed definition’, a function need not have a period
-p whenever it has a period p.
For example, the function graphed below has a period 2, but not
a period -2.

XXX
DOMAIN ={1,2,3,...} X X x

----- *-----1----- »----- 1----- 1----- 1-----------
1 2 3 4 5 6

The problem with this ‘proposed definition’ is that it is possible
to define functions with nonzero periods that no reasonable per­
son would wuiit to call periodic. This is illustrated in the next
 example. a £— ------ —

-----~

EXAMPLE Define a function f as follows: let 0 E P(/), and require f to have
periods 1 and ir (as per the ‘proposed definition’). Then, the
numbers 1,2,3,4,... must all be in !>(/), as must ir,2ir,3tt,4tt,... .
Then, all elements of the form k + nir must be in 2>(/), where k and
n are nonnegative integers. Now, the set {!• + nit | k > 0, n > 0} is
closed under addition, and forms T(/).

Define f to be 1 everywhere on its domain. A moment’s reflection
confirms that f does indeed have periods 1 and ir.
The problem, however, is this: the graph of the function does not
periodically repeat itself as one moves from left to right, since
new domain elements are constantly being added! In particular,
the graph of f does NOT repeat itself on intervals of length 1 or
7T, so most people would feel uncomfortable calling f ‘periodic’. A
partial graph of f is shown next.

A ‘periodic’
function?

x X XX XX XX XXX XXX XXX XXXX XXXX XXXX XXXXX X2OCXX XXXXX XXXXXX XXXXXX XXXXXX XXXXXXXXXXXXXXJ .

4 6 8 16 12 14 16 18 20
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contents of
the next section

Thus far, this section has carefully established basic properties of
functions with a period p. Many interesting questions arise when
one considers the set of all periods of a function. Does every pe­
riodic function have a least positive period? (No.) If a periodic
function does not have a least positive period, can anything be
said about it? (Yes. The periods must be dense in R, and the func­
tion must be either constant, or everywhere discontinuous.) Is the
sum of two periodic functions (with different periods) necessarily
periodic? (No.) If two functions have the same least positive pe­
riod, must their sum have this same least positive period? (No.)
These are some of the questions addressed in Section 1.4.

Some Basic Reshaping Techniques

This section closes with some interesting ‘reshaping’ results that
can be used, in certain cases, to identify periodic components
in a finite list of real numbers. The next few definitions and
notation will considerably simplify the statement and proof of
the ‘reshaping’ theorem.

DEFINITION
mean of a list

Let y = (yi,... ,yu) be a finite list. The mean of the list y is the
number py defined by py := jf(yi + y2 + • • • + yw).

LEMMA 5
the mean of a
sum of lists
is the
sum of the means

Let xi,X2,... ,xm be lists, each of the same (finite) length, and let

S = xi + x2 + • • • + xM .

Then,
PS = Px, + + • • ■ + P* M ■

PROOF
of Lemma 5

Thus, the mean of a sum of lists is the sum of the means of the
component lists.

First, it is shown that the result holds when S is generated by
only two lists. Thus, suppose that

S = (zi,... ,xN) + (yi,... ,yN) = (ri + yi.......xN + yu) .

Then,

Ps = ^((*i  + yi) + ••• + (xN + yN))

= N(Xi ----- Xn^ + "l------- *" yN^ = + ’
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The remainder of the proof follows by induction. Suppose that
the result holds for K lists, where K > 2 is a fixed integer, and
suppose that S is a sum of K + 1 fists, denoted by xi,... ,xk+i .
Write

S = xi + --- + xk + xk+i ,

so that S is viewed as a sum of two lists. Then,

Ms = Mxi+-+xk + Mxk+1
= (Mx1 + --- + Mxk) + Mxk+1 ,

where the inductive hypothesis was used in the second step. |

DEFINITION Let p be a positive integer. The phrase ‘p-cyc/e’ is used to denote
cycle any list of the form

1“ cycle 2"d cycle

(X1,X2,... > ^-p> ^1> ^-2> • • • >®p«’

r,h cycle

,Xp) ;

that is, a p-cycle is any list composed of p numbers in a specified
order, that are repeated r times, where r is a positive integer.
The length of a p-cycle is necessarily a multiple of p.
For positive integers p and q, a p-cycle and a q-cycle are called
relatively prime if p and q are relatively prime; that is, if p and q
have no common factors other than 1.

NOTATION
for cycles

Let r be a positive integer, and let x = (xi,... ,xp). The notation
rx is used for the p-cycle formed from r repetitions of x:

1“ cycle 2nd cycle r,h cycle
rx := (ii,.?. ,Xp,... .ip") .

M(rx) = Mx Observe that the mean of x = (xi,... ,xp) is equal to the mean of
any p-cycle rx, since

Mx = -(*i  H------ 1- xp

and
M(rx) = ~Sr(X1 +--- + xp^ •
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EXAMPLE Suppose that a list S of length 6 is a sum of a 2-cycle and a 3-cycle,
say

S = + (£o^T,5?O^l) = (5,5,1,8,2,4) .

There are of course an infinite number of ‘similar’ cycles that
could have summed to yield S : given any constant K,

S = (2 + K, 5 + K, 2 + K , 5 + K, 2 + K, 5 + K )
+ (Z-K, Q-K, -1-K, 3 — K, 0 —K, -1-K). .

That is, one component can be shifted any given amount K,
provided that the remaining component is shifted the opposite
amount, -K . Thus, given only the sum list S = (5,5,1,8,2,4), it is
impossible to recover the precise cycles that originally generated
S. However, it is possible in this case to recover zero-mean 2 and
3-cycles which, when added to ps, yield S. Only some basic re­
shaping techniques are needed. The technique is presented in the
proof of the next theorem.

THEOREM
identifying
periodic
components
in a finite list

Let p and q be relatively prime positive integers; that is, p and q
have no common factors other than 1. Let S be a list of length N,
where N is a multiple of both p and q (and hence, TV is a multiple
of pg). Suppose that S is a sum of a p-cycle and a g-cycle, i.e.,

S = (xj....... Xp , Xi , . .. , Xp , . .. , , Xi , . . . , Xp)

+ >yg,yi>--- ,yg',yi,-~ >yg>- ,yi,--- ,yg) ■

By letting

x := (xi,... ,xp) and y := (yi,... ,pj ,

and using cycle notation, S can be written more compactly as

s = Wp)x + Wf)y .

Then, given only the sum S (and not the component lists), there
is a constructive method for finding zero-mean lists

xo := (ii.......Xp) and y0 “ (j/i........y?)

such that
S = W')xo + W»>yo + Ms ,

where Ms is the list of length N having every entry equal to ps-
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= (ii + 371, 12 + J/2, xq + yq, Xg+i + yi, ...,xp+y>, ii + y?, .... xp + yq) .

PROOF
producing the
lists xq and yo

The proof illustrates the procedure that yields the zero-mean lists
xq and yo.
Renaming, if necessary, suppose that p > q. In the following sum­
mation of the two components forming S, the notation y> is used to
indicate that the exact subscript on y depends on the relationship
between p and q:

S=(

+ (
II, 12, •••, Xg, ij+i, • ••, ip, ii,-.., ip)

yi, y2, •••, yq, yi,---, y?, . ........ yq)

Subtract ps from each entry in S, and call the resulting list So
(since So has mean 0). To find x0, first reshape So in rows of
length p:

first row

(ii + yi - Ps, 12 + !/2 - Ps, • ■ • , Xg + yq - ps,... , Xp + y> - ps, ii + y? - ps, • • •) ,

to get
xi + yi - ps
Xi + !/? - PS

Xi + y> - ps

X2 + 3/2 - Ps
x2 + y?~ ps

x2 + y?~ ps

xp + y?~ ps
xP + y? - ps

xP + yq - ps

There are j rows in the arrangement above. Summing the entries
in each of the p columns gives the column sums

TV, . v—' 1 (N1 \ ' 1 1 TV. . y—\ |
— (ii - Ps) + > / !/i I — (i2-Ps) + 2^yi] ••• — (*p  - Ps) + > , 3/i I •
P cdl / \P c^2 / \P colp /

There are y sets of (yi,... ,yq) in the entire list, and these are
equally divided among the p columns, since p and q are relatively
prime. Thus, each column contains sets of (t/i,... ,yg), and hence

EJV , . IV . ,
yi= —(yi + ••• + %) = —Py , t = l,...,p.

col i Pq P

Dividing each column sum by y gives the averages of each column:

1**  column average

Il - PS + Py

2“d column average

X2 - pS + Py

last column average

Xp - PS + Py

Since ps = px + Py, these column averages can be written more
simply as

column average

Il “Px

2O<I column average

12 ~Px

last column average

®p~Px
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Therefore, the column averages of the reshaped list recover the
list x, with each entry decreased by px. Define xq to be the list
consisting of these column averages:

Xo := (*i  - Mx, X2 - Mx, • • • , Xp - Mx) •

Clearly, x0 has zero mean.

A similar reshaping of So into rows of q each yields the column
averages

yo := (Vi - My, !/2 - My Vi ~ My) •

Then,

W')x0 + W«)y0 = Wp)x - Mx + - My

= S - MS ,

from which
S = (^”>xo + (A7?)yo + Ms . ■

The theorem does not hold if p and q are not relatively prime,
even if N is a multiple of pq. Also, the theorem does not hold if p
and q are relatively prime, but N is not a multiple of pq.

extending the
previous theorem

The constructive technique just discussed also works if S is a sum
of any finite number of relatively prime cycles, providing that N
is a multiple of the product of the cycles.
To see this, suppose that the theorem holds for K cycles, and
suppose that

:=C
s = Ci 4----- F Ck +Ck+i ,

where C,- is a p,-cycle.

The list C is a P1P2 •-px-cycle, which is relatively prime to pk+i,
by hypothesis. Thus, applying the theorem to C and Ck+i yields

S = C 4- Ck+i 4- Ms •

Then, using the inductive hypothesis on C, and the fact that
Me = 0, one obtains

S = Ci 4----- F Ck+i 4- Ms •
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uniqueness of
decomposition
into
relatively prime
cycles

In general, a positive integer N may be viewed as a product of
relatively prime integers in more than one way. For example,
30 = 2 • 15 = 3 • 10 = 5 • 6. Thus, given a list S of length 30, one might
separately investigate the hypotheses that:
• S is a sum of a 2-cycle and a 15-cycle;
• S is a sum of a 3-cycle and a 10-cycle;
• S is a sum of a 5-cycle and a 6-cycle.

Under what conditions will N have a unique decomposition as a
product of relatively prime integers? The next proposition an­
swers this question.

PROPOSITION Let AT be a positive integer. Then, N has a unique representation
as a product of relatively prime integers if and only if the prime
factorization of N is of the form pmqn, where p and q are prime
with p/ q, and m and n are positive integers.

PROOF Ct*, »

Suppose that the prime decomposition of N is of the form N = pmqn
for primes p ?, m and n positive integers. Then, pm and qn are
relatively prime integers with product N. Any other regrouping
of the prime factors as a product of two numbers is necessarily of
the form N = did2, where either d^ and d2 have a common factor
p; or di and d2 have a common factor q.
cc »

Suppose that N has a unique representation as a product of rel­
atively prime integers. If N has exactly one distinct prime in its
prime decomposition, say N = pm for a prime p and positive inte­
ger m, then N cannot be written as a product of relatively prime
integers. If N has three or more primes in its prime decompo­
sition, say N = pmqnrjx where p, q and r are distinct primes, m,
n and j are positive integers, and x is either 1, or a product of
primes other than p, q and r, then N can be written as a product
of two relatively prime integers in more than one way: say,

N = (pm)-(qnrJx)
= (9n)-(pmrix).

Thus, N must have precisely two distinct primes in its prime fac­
torization. |
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MATLAB The following diary of an actual MATLAB session illustrates the
EXAMPLE reshaping procedure, while reviewing the necessary MATLAB

commands.
The illustrated procedure could be implemented much more effi­
ciently. However, efficient implementations often obscure simple
underlying ideas. Therefore, in what follows, efficiency has been
sacrificed for the sake of clarity.

4 construct a 'known unknown': a 2-cycle, 3-cycle and 5-cycle
x = (1 2];
x=(xxxxxxxxxxxxxxx];
% x is a 2-cycle of length 30
y = [-1 0 4J;
y - Cyyyyyyyyyy];
4 y is a 3-cycle of length 30
z = [-1 3 1 2 0];
z»[zzzzzz);
I z is a 5-cycle of length 30
4 sum the components to get the 'known unknown'
S - x + y + z;
4 subtract off the mean of S to get SO
SO » S - mean(S);
4 reshape SO to test for a 2-cycle, using the 'reshape' command
rl = reshape(S0,2,15)'

-4.5000 1.5000
2.5000 -0.5000

-2.5000 1.5000
-0.5000 -0.5000
3.5000 -2.5000

-3.5000 5.5000
-2.5000 0.5000
1.5000 -3.5000
0.5000 3.5000

-1.5000 -1.5000
0.5000 0.5000

-1.5000 4.5000
-3.5000 -2.5000
4.5000 -1.5000

-0.5000 2.5000

4 average the columns, using the 'sum' command, dividing by t of rows
rl = sum(rl) / 15

-0.5000 0.5000

4 Observe that this is precisely x - mean(x)1
temp - x - mean(x);
temp(l:2)

ans “

-0.5000 0.5000

4 Now, repeat, testing for the 3-cycle and 5-cycle
r2 - reshape(SO,3,10)';
r2 = sum(r2) / 10
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r2 =

-2 -1 3

r3 reshape(SO,5,6) ';

r3 - sum(r3) / 6

r3 =

-2 2 0 1 -1

% Now, build rl, r2, and r3 into length-30 cycles
rl = [rl rl rl rl rl rl rl rl rl rl rl rl rl rl rl];
r2 = (r2 r2 r2 r2 r2 r2 r2 r2 r2 r2 ] ;
r3 » [r3 r3 r3 r3 r3 r3];

% Sum rl, r2 and r3, and add mean(S) back in, to recover S:
predict = rl + r2 + r3 + mean(S)

predict -

Columns 1 through 12

-1 5 6 3 1 5 3 3 7 1 0 9

Columns 13 through

14 5

24

0 4 7 2 2 4 4 2 8

Columns 25 through 30

0 1 8 2 3 6

4 Compare with S:
S - predict

ans =>

Columns 1 through 12

0 0 0 0 0 0 0 0 0 0 0 0

Columns 13 through 24

0 0 0 0 0 0 0 0 0 0 0 0

Columns 25 through 30

0 0 0 0 0 0
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1.4 More on Periodic Functions

P,
the set of
all periods

Let P denote the set of all periods of a real-valued function f
defined on some subset of R. If f has any nonzero period p, then
Lemma 2 of Section 1.3 shows that P contains all integer multiples
of p. Can there be anything else in P? More generally, what can
P (as a subset of R) look like? This is the first question to be
addressed in this section. First, a preliminary definition:

DEFINITION A set S is dense in R if there are elements of S arbitrarily close
dense in R to any real number. Precisely, S is dense in R if and only if for

every x e R and for every e > 0, there exists sES with |z - s| < e.

The sketch below suggests a geometric view of this definition.

3 s&S

-t- •—^4--
x — e x x + e

What can P,
as a subset ofR,
look like?

The next theorem completely characterizes what the set of all
periods of a function can look like.

THEOREM 1
characterizing P

[adapted from Olm, p. 549] Let f be a real-valued function with
T>(f) C R, and let P be the set of all periods of f. The set P satisfies
exactly one of the following properties:
(a) p = {o}; in this case, f is not periodic.
(b) P consists of all integral multiples of some least positive

period P, also called the fundamental period of f.
(c) P is dense in R; in this case, !>(/) is also dense in R, and

there is no least positive period.

The next lemma is used in the proof of Theorem 1.

LEMMA 1
closure in P

The set P of all periods of a function f is closed under addition,
subtraction, and multiplication by an arbitrary integer.
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PROOF Let pi and p2 be in P, and let x G Then, x +pi G P(/), so also
of Lemma 1 (x + pi) + p2 G !>(/). Furthermore,

f(x + (pi + p2)) = /((*  + Pi) + P2)
= f(x + Pl) (p2 is a period)
= /(z) . (pi is a period)

This implies that pi + p2 is a period of /, and thus P is closed
under addition. The fact that P is closed under multiplication
by an arbitrary integer follows from Lemma 2 of Section 1.3. In
particular, -p2 is a period of /, so that closure under addition
implies that pi 4- (-p2) = Pi - P2 is also a period of f. Thus, P is
also closed under subtraction. |

Proof Structure The logical structure of Theorem l’s proof is summarized in the
of Theorem 1 flow chart below.

P = {0) P / {0}
case (a) , 

V P does NOT

have a least positive period
P has a I

least positive period P; I

Case (b) define

g := glb{all positive periods of /}

cannot occur cannot occur

PROOF
of Theorem 1

The set P always contains 0, since 0 is a period of every function.
If 0 is the only element in P, then f has no nonzero period, and
is not periodic. This is case (a).
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If P / {0}, then there exists p / 0 in P. Since both p and -p are
periods of /, it can be assumed that p is positive. Either P has a
least positive period, or not. If so, let P denote the least positive
period, and let

B := {nP | n G Z} ,

so that B consists of all integer multiples of P. Since every integer
multiple of P is a period of /, it is always true that B c P. Suppose
for contradiction that B C P, so that there exists p g P with p$B.
Without loss of generality, suppose that p > 0. Covering R by
intervals of the form (nP, (n + 1)P], n g Z,

<■ I I ]
0 P 2P 3P

P
-H-3—
kp (fc + l)p

it must be that p g (kP, (k + 1)P] for some positive integer k. But
then, p- kP G (0,P], so that (via Lemma 1) p- kP is a strictly
positive period of f that is less than P; a contradiction. Thus,
B = P; this is case (b).

It remains only to show that if P does not have a least positive
period, then P is dense in R. Define g to be the greatest lower
bound of all positive periods in P. Either g = 0, or g > 0. If g = 0,
then there exist arbitrarily small positive periods. In particular,
given any e > 0, there exists a positive period p£ with p£ < e.

0 = gib €.

Then,
{kpc | k G Z} C P ,

and
{*  + kpc I x G 'D(f'), k G Z} c P(/) .
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Let y be any real number, and cover R by intervals of the form
(kpc,(k + l)pf] for k G Z. Thus, there exists an integer j with

y G (j'Pe. (j + 1 )Pe] •

Since the interval 4- l)p£] has length pc which is less than e,
the distance from y to (j + l)p£ is less than e. Hence, (j + l)pe is
an element of P within e of y, from which it is concluded that P is
dense in R.

To see that !>(/) is dense in R, repeat the previous argument, this
time covering R by intervals of the form

(x + kpe , x + (fc + l)p«] ,

where x is a fixed element of !>(/).
Thus, both P and 7>(/) are dense in R.

It is shown next that g > 0 cannot occur. For if g > 0, then either
g G P or g P. If g G P, then g would be a least positive period;
but the current assumption is that P has no least positive period.

Thus, it must be that g £P. Then, there exist positive periods
arbitrarily close to g. In particular, given e with 0 < e < g, there
exist distinct positive periods Pi and p2 with 0 < px - p2 < e < g.

Pi ~P2
€ < g

Via Lemma 1, pi — p2 is a period of /, and px — p2 is strictly less
than y; contradicting the fact that g is the greatest lower bound.
Case (c) has now been proven. |

A useful consequence of Theorem 1 is:

COROLLARY 1 Every discrete-domain periodic function has a least positive pe­
riod.
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PROOF
of Corollary 1

Let f be a discrete-domain periodic function. By definition of a
discrete-domain function, the elements of T>(f) come from a time
list. No time list can be dense in R. To see that this is the case, let
ti and be two consecutive entries in the time list, so that < t2.
Define e := t2 -ti, so that e > 0. Then, the midpoint t := js an
element of R with no time list entry within, say, j of t.

e

|(*1 +<2)

4---------1----------1

Thus, the domain of a discrete-domain function cannot be dense
in R, which excludes case (c) of Theorem 1. Since f is periodic,
case (a) does not hold. Thus, case (b) holds, and f has a least
positive period. |

the domain of
a discrete-domain
periodic function
need not be
a uniform time list

It is important to note that the domain of a discrete-domain pe­
riodic function need not be a uniform time list, as the example
below illustrates.

* * X
X X x * '
4—1 1 I I I—1—4 I—I I I---- > t

LEAST POSITIVE PERIOD = 4

To avoid topological digressions, any discussion of continuity of
periodic functions is restricted to periodic functions with domain
R (having its usual topology). The next theorem characterizes
periodic functions defined on R that have no least positive period.

THEOREM 2 Let f: R —* R be a periodic function with no least positive period.
Then f is either constant, or everywhere discontinuous.
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PROOF
of Theorem 2

By Theorem 1, the set P of all periods of f is dense in R. To show
that f is either constant or everywhere discontinuous, it is shown,
equivalently, that if f is not everywhere discontinuous, then it is
constant.
So suppose that f is continuous at x = a, and suppose for contra­
diction that f is not constant. Then, there exists b with /(6) / /(a).
Choose e with 0 < e < |/(6) - /(a)|. By continuity of f at a, there
exists 6 > 0 such that whenever |z - a| < 6, one has |/(x) - /(a)| < e.
Consequently, whenever x is within the ^-interval about a, f(x) /
/(£>). However, since the periods of f are dense in R, there exists a
period p with 0 < p < 6. On the interval [a, a + p] c [a, a + 5), f must
take on <11 the va’/'es in its range.}, in particular, /(6).

fflW----------Li-

d .J
- —<--- 1—H------ t-

a — 8 a a + 8 b

This yields the desired contradiction. |

a summary To summarize: by Corollary 1, every discrete-domain periodic
function has a least positive period and, by Theorem 2, if a pe­
riodic function defined on R has no least positive period, then it
is either ‘uninteresting’ (constant), or ‘very unusual’ (everywhere
discontinuous).
To avoid the problems associated with periodic functions having
no least positive period, in the remainder of this text, it is assumed
that all periodic functions have a least positive (fundamental) pe­
riod.

sums of
periodic functions

The remainder of this section investigates sums of periodic func­
tions, where each summand has a fundamental period. The next
definition provides a method of comparing real numbers that is
very important in this context.

DEFINITION
commensurable
numbers

Two nonzero real numbers p and q are commensurable if and only
if the ratio E is a rational number.i
A finite set of nonzero real numbers {pi,p2l... ,pn} is commen­
surable if and only if the ratios are rational numbers, for all
i,j G {1,2,... , n}.
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EXAMPLES Every pair of nonzero rational numbers is commensurable, els is
every finite set of nonzero rational numbers.
The numbers \/2 and 3>/2 are commensurable.
The numbers 2 and tt are not commensurable. Indeed, any finite
set that contains at least one rational number and at least one
irrational number is not commensurable.

The questions addressed next arise naturally when investigating
sums of periodic functions.

QUESTION 1: QUESTION: Must a sum of periodic functions be periodic?
ANSWER: No. The classic counterexample is provided by the
sum

sin x + sin irx .

Here, sin x and sin ttx have fundamental periods 2% and 2, respec­
tively, but the sum is not periodic. (The proof is a simple con­
sequence of Theorem 5 or Theorem 6 in [O&T].) Note that the
fundamental periods of the summands axe not commensurable in

★ Computers cannot represent irrational numbers. Therefore, the
‘computer’ rendition of the sum sin x + sin irx is necessarily a sum
of sinusoids with commensurable periods. The following results
will show that the ‘computer’ sum is indeed periodic, but with a
very large period.

It will be shown in Theorem 3 that a sum of functions with com­
mensurable least positive periods must be periodic. However, the
next example shows that, even in this case, the sum need not have
a least positive period.
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QUESTION 2: QUESTION: If a sum of functions with least positive periods is
periodic, must the stun have a least positive period?
ANSWER: [C&P, p. 33] No. The functions f and g defined below
each have fundamental period 1. Their sum f + g is periodic, but
(as shown in Section 1.3) has no least positive period.

1 for x G Z
0 for x £ Z

1 for x G Q and x £ Z
0 for x £ Q or x g Z

1 for x e Q
0 for x (£ Q .V = /(ar)

QUESTION 3: QUESTION: Suppose that two functions have the same least pos­
itive period, and their sum has a least positive period. Must the
sum have the same least positive period as the summands?
ANSWER: No. Consider functions f and g with common domain
Z, and with output lists given below. Both f and g have funda­
mental period 4, but their sum has fundamental period 2. For an
example using continuous summands, see [C&P, p. 32].

2,0,-2,0, 2, 0, -2, 0, ...)

9 ■ (•• 3, 0, ...)

f + g : (..., 1, 0, 1, 0, 1, 0, 1, 0, ...)
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the fundamental
period
can be made
as small
as desired

This last example can be further generalized. Indeed, the fun­
damental period of the sum can be made as small as desired,
without changing the fundamental period of the summands, as
illustrated by the output lists given below. For an example using
continuous summands, see [C&P, p. 33].
Theorem 3 addresses the question: What are the possible candi­
dates for the fundamental period of a sum?

• •
uoniiMMi---- FUNDAMENTAL PERIOD = 1

1

<-♦ i i I » I-I » » i i •— FUNDAMENTAL PERIOD = 1

» < 1 1 ....................... FUNDAMENTAL PERIOD = £

The next theorem assures that a sum of periodic functions with
commensurable least positive periods is itself periodic:

THEOREM 3 If functions /i, f2,..., fn have a common domain T> and commensu­
rable least positive periods Pi, P2,..., Py, then the sum fa H----- 1- fN
is periodic.

LEMMA 2

The proof of Theorem 3 makes use of the next three lemmas.

If p and q are commensurable, then there exist integers n and d
(d/0) withp = (5)g.

PROOF
of Lemma 2

By definition of commensurable numbers, the ratio & is rational.
Thus, there exist integers n and d with = j, from which p =
(5)?- ■
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LEMMA 3
scaling
periodic
functions

Let s be a fixed positive real number.
A function f has fundamental period P if and only if the function
g defined by

g(xs) := f(x) for all a: €

has fundamental period sP.

the function f,
with domain
scaled by s

The function g in this lemma is referred to as 'the function f, with
domain scaled by s’.
A periodic function f and ‘scaled’ functions g are shown below,
for two different choices of the scaling factor s.

H—Illi—I—I-- >
1 .2 .3.4 .5 .6

s = 2

4—i I I I I » J I I I I------->
.4 .8 1.2
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PROOF
of Lemma S

[adapted from C&P, p. 35]
“==>” Let f have least positive period P. For a given positive real
number s, the domain of g is:

T>(y) = {y g R | y = xs for some x g !>(/)} .

Whenever x G P(/), so are x±P, which implies that (x±P)s = xs±sP
are in the domain of g. Let y G l>(y), and write y = xs for some
zGD(f). Then,

g(xs ± sP) = g((x± P)s) (regroup)
:= f(x ± P) (definition of g)
= f(z) (f has period P)
:= g(xs) . (definition of y)

This shows that y has period sP.

A preliminary observation is necessary before showing that sP is
the least positive period of y. Observe that !?(/) can be written as

W = {;|yGP(y)}. (*)

To see this, let x g "£>(/); then xs G P(y), and so g | y G 2>(y)}.
That is, x G {*  1 y G P(y)}. Also, if x G {*  | y G T>(y)J, then x = = x
for some x g D(.f), so that x g T>{f\

Now it is shown that sP is the least positive period of y. If Pi is
any positive number less than sP, write Pi = sP, where P < P. If
y has period sP, then it must be that, for every x G P(/),

g(xs ± sP) = g(xs) . (**)

Since xs ± sP G T>(y), (*)  shows that x ± P g ©(/). But since g(xs +
sP) = f(x ± P) and y(xs) = /(x), (**)  implies that f(x ± P) = /(x) for
every x g 'P(f'), so that P is a period of f that is strictly less than
P. This contradicts the fact that P is the least positive period of
f. Therefore, sP must be the least positive period of y.

“<=” For the remaining argument, use the result just proven to
scale the function y by to obtain f. I
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LEMMA 4 Let A,.... /v be functions with a common domain T>, and let s > 0.
Scale each /,• by s to obtain a corresponding scaled function g{, as
per Lemma 3. Then,

n
p is a (fundamental) period of f := J") /,• <=>

«=i
N

sp is a (fundamental) period of g := 57 g,- .
i=l

PROOF
of Lemma 4

Since the functions have a common domain T>, the functions g,
have a common domain

T)s := {is | x G ,

which is also the domain of the sum g. Also, for every x g T>,

N N
g{xs) — Y^g^xs) -.= Yfi{x) •= ■

t=l i=l

‘=>’ If p is any period of /, and xs is any element in T>s, then

g(xs ±sp) = g ((z ± p)s) = f(x ± p) = /(i) = g(xs) ,

so that sp is a period of g.
‘<=’ If sp is a period of g, then, for every x g

f(x±p) = g((i±p)s) =g(xs) = f(x) ,

so that f has period p.
An argument similar to that in Lemma 3 shows that the cur­
rent lemma holds true with ‘period’ replaced by ‘fundamental
period’. |

Now, the proof of Theorem 3:

PROOF
of Theorem 3

[adapted from C&P, p. 34] Suppose that functions flt... ,fN have
a common domain V and commensurable least positive periods
Pi Pn. Then, the pairs {Pi,P,} for 2 < i < N are commensu­
rable, so that by Lemma 2 there exist integers n,- and d, (2 < i < N)
with

* = (£)*• (*)



53

Let M be any common multiple of the integers d2,... ,dN, and
define s := Since /,• has least positive period P,-, using Lemma 3
and scaling by s produces a counterpart scaled function gi with
least positive period

sP.:=(^

= (usins (*))
Mni

“ di
G Z , for all i = 2,..., N,

where membership in Z results from M being a common multiple
of the di. Also, sPi = M G Z. So, the functions /,• have ‘scaled’
counterparts gi which have integer least positive periods sP,-, for
i= 1,... ,N.
The integer

(sPi)(sP2)-...-(sPjv) (**)

is a period of each gi, and hence a period of the sum g. By
Lemma 4, any rearrangement of (**)  in the form s ■ K shows that
A is a period of f. Thus, f is periodic. |

Although Theorem 3 guarantees that the sum of periodic func­
tions with commensurable least positive periods is itself peri­
odic, it cannot guarantee that the sum has a fundamental period
(see the answer to Question 2). Fortunately, the situation with
discrete-domain periodic functions is considerably nicer:

COROLLARY 2 Every finite sum of discrete-domain periodic functions with a com­
mon domain is a discrete-domain periodic function with a least
positive period.

PROOF
of Corollary 2

Let fi,... ,fN be discrete-domain periodic functions with a com­
mon domain T>. By Corollary 1, each function fi has a least pos­
itive period P,-, for i = 1 N. It is argued next that these least
positive periods must be commensurable.

Suppose for contradiction that there exists a ratio that is irra­
tional, where P = P, and Q = Pj for some i and j between 1 and N,
»/ j-
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QUESTION 4:

NOTATION:
Icm,
a|6,
relatively prime

Choose any x g T>. Since P is a common domain and P is a period
of a summand, x ± kP G V for every k e Z. Then, since Q is a
period of a summand, it must be that (z ± kP) ± jQ g P, for every
k,j g Z. In particular, x + (kP + jQ) g P for all integers k and j.
However, the set {kP + jQ | k G Z, j g Z} is dense in R since P
and Q are incommensurable positive numbers [Olm, Theorem 4].
Thus, P must be dense in R. However, the domain of a discrete­
domain function cannot be dense in R: this supplies the necessary
contradiction. Thus, the least positive periods of the summands
must be commensurable.

Theorem 3 shows that the sum is a periodic discrete-domain func­
tion, which must have a least positive period by Corollary 1. |

QUESTION: Suppose that functions fi, f2,..., /jv, each defined on
R, have fundamental integer periods Plt P2,... , Pn, respectively. In
this case, the fundamental periods are commensurable, so the sum
is periodic. If the sum has a fundamental period, what are the
candidates for this fundamental period?

Caveny and Page have answered this question in [C&P, pp. 38-
41], and their result is presented next. In what follows, the no­
tation ',lcm> means least common multiple, and a|5 means that a
divides 6, i.e., b/a is an integer. Furthermore, two integers are
relatively prime if and only if they have no common factors other
than 1.

THEOREM 4 [C&P, pp. 38-41] Let Pi,P2l... ,PN be positive integers.
candidates for the jf there exist real-valued functions fi,f2,... ,/n defined on R with

Pen°d resPec^ve fundamental periods PltP2,... ,PN, such that the sum
J " f := /j -|------1- fN has fundamental period P, then the number P

must satisfy the following conditions:
(a) P = where u and v are relatively prime integers, and u

satisfies the following two conditions:
(b)u  | lcm(Pi,P2,... ,Pn)‘i and
(c) u is divisible by each prime power that divides precisely one

Pi (1 < i < AT).
Conversely, whenever a real number P satisfies (a), (b), and (c),
then there exist real-valued functions A,... ,fu defined on R with
respective fundamental periods Pi Pv, such that the sum fi +
. • • + fN has fundamental period P.
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EXAMPLE
using Theorem 4
with non-integer
periods

The following examples illustrate the use of this theorem. The
first example shows how the result can be used with summands
that have commensurable (but not integer) fundamental periods.
The second example shows how the result can be used to obtain
some information about sums of discrete-domain periodic func­
tions.

[C&P, p. 40] Suppose that functions gi, g2, g3 and g4 are defined
on R and have respective fundamental periods Qi = 3a, Q2 = ™a,
Q3 = |a, and Q4 = ^a, where a is irrational.
Scaling each function by s := £ yields functions /,■ (1 < i < 4) with
respective integer fundamental periods Pi := Q^s = 12, P2 := Q2s =
13, P3 := Q3s = 14 and P4 := Q4s = 15. (A general procedure for pro­
ducing such a scaling factor is discussed following the example.)
The prime factorizations of the P,- are:

Px = 22 • 3, P2 = 13, P3 = 2 • 7, P4 = 3 • 5 .

Observe that Icm^,P2,P3,P4) = 22 • 3 • 5 • 7 • 13.
What are the prime powers that divide precisely one Pi?
22 only divides Pj;
13 only divides P2;
7 only divides P3;
5 only divides P4.
If the sum f := fi+ f2 +f3 + f4 has a least positive period P, then
P must be of the form P = where u and v are relatively prime,
u divides 22 • 3 • 5 • 7 • 13, and u is divisible by 22, 13, 7 and 5.
Thus, either u = 22 • 13 • 7 • 5 = 1820 or u = 3 • (22 • 13 • 7 • 5) = 5460.
So the candidates for P are

1820{—— | v is a positive integer relatively prime to 1820}

or

{^2 | v is a positive integer relatively prime to 5460} .

Scaling back to the original functions gi by using the scale factor
7 = f, the candidates for the fundamental period of gi + g2 + g3 + <?4
are

• ^ | v is a positive integer relatively prime to 1820}
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or

5^2 • - I v is a positive integer relatively prime to 5460} .
v 4 *

Any more specific information about the fundamental period of
the sum gi + g?+g3+g4 would require additional information about
the functions gi.

scaling to
obtain
integer periods

As illustrated in the preceding example, the requirement in Theo­
rem 4 that the fundamental periods Pi,... ,Pn be integers is easily
overcome by applying a common scaling factor.

Indeed, whenever functions fi,... ,/n have commensurable funda­
mental periods, then a common scaling factor s can always be
applied (if necessary) to obtain a new, scaled, set of functions
that have integer periods. To do this, suppose that the respective
fundamental periods of the A are

ria, ... , rNa , (*)

where the rf are rational and a is a (possible) irrational factor.
Rewrite the rational factors r,- as equivalent fractions with least
common denominator D, so that the list in (*)  becomes

aia a^a
’ TF ’

The a,- are integers. Scaling by then produces a new set of
functions with respective fundamental integer periods ai,... ,a^.

using Theorem 4
with discrete­
domain functions

Before using Theorem 4 with discrete-domain functions, it is nec­
essary to understand how the set of periods of a discrete-domain
function compares to the set of periods of its extension to R. This
is the content of Lemma 5.

LEMMA 5
the periods of
an extension

Suppose that f is a discrete-domain periodic function, with do­
main T>. Let fe denote the extension of f to R defined by

, z x _ / f(x) for i G P
/e(x) “to for x £ V .

Let P denote the set of periods of f, and let Pe denote the set of
periods of fe. Then, P c Pe. It is possible for the containment to
be proper.
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PROOF
of Lemma 5

Let /, /e, D, P and Pe be els in the statement of the lemma. To
show that P C Pe, suppose that P is a period of /, and let x G R.
Either x g D or x £ T>.
If x G P, then so is x ± P, and

/e(z±P) = /(z±P)

= /(*)
= fe{x) .

(definition of /e)
(P is a period of /)
(definition of /e)

If x V, then neither are x ± P, so both ft(x) = 0 and fe(x ± P) = 0.
Thus, P is a period of /e, so P g Pe.

The examples below illustrate that Pe can be strictly larger than
P- I

EXTEND

FUNDAMENTAL PERIOD = 1

/e=0

Pe = R

f HAS PERIOD 2P,
BUT NOT PERIOD P

fe HAS PERIOD P

It is a consequence of Lemma 5 that if P £ Pe, then P £ P. This
observation is used in the next example.
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EXAMPLE
using Theorem 4
with discrete­
domain functions

(It will be instructive for the reader to compare the discussion
here with the answer to Question 3.)
Suppose that discrete-domain periodic functions f and g both
have fundamental period 4, and a common domain. Suppose fur­
ther that f and g are such that their extensions fe and ge to R still
have fundamental period 4.
Now, apply Theorem 4 to (J + g)e = fe + ge. The candidates for
the period of this (extended) sum are of the form where u and
v are relatively prime and u|4. (In this case, there is no prime
power that divides precisely one P4.) Thus, u must equal 1, 2, or
4, so the candidates for the period of fe + ge are

{- | v is a positive integer greater than 1}

or 2
{- | v is any positive integer relatively prime to 2}

or 4
{- | v is any positive integer relatively prime to 4} .

If P is not one of the numbers in these sets, then P cannot be a
period of f 4- g.
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1.5 Using Identified Periodic Components for Prediction

Introduction The next example raises a question that is of fundamental im­
portance whenever an analyst wants to use identified periodic
components for predictive purposes. Small numbers are used in
the example, for ease of notation.

EXAMPLE
conjecture that
y is a sum of
a 3-cycle and
a 2-cycle

Suppose that an output Est y is conjectured to be the sum of a
3-cycle (p) and a 2-cycle (q). That is,

p+q=y,

or, in list form,

(P1.P2,P3>P1>P2>P3)...)

+ (9i>92,91.92,91,92,-..) (1)

= (yi,P2,i/3,y4,y5,’/6.---) •

This conjecture may have come from some preliminary data anal­
ysis on the already-observed output values y; or from some under­
standing of the underlying mechanism(s) generating the observed
data.

the ‘knowns’
and ‘unknowns’

The yi values axe being observed by the analyst; once a given value
is observed, then it is known. The entries p, and g,- in the cycles
are unknown. Based on the observed values of y,-, it is desired
to either support or deny the conjecture that y is the sum of a
3-cycle and a 2-cycle; if supported, it is desired to identify lists p
and q that can be used to predict future values of y.

equating entries
in (1) yields
a linear systemi

By summing and then equating entries in (1), a system of linear
equations in the unknowns p,- and g; emerges:

Pl + 91 = 1/1

P2 + 92 = Z/2

P3 + 91 = 2/3

(2)
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some linear
algebra
considerations

Some linear algebra considerations regarding the linear system
just produced are in order. Since there are 5 unknowns (px,
p2, P3, 9i, and g2), one needs 5 pieces of non-overlapping, non­
contradictory information to uniquely determine the 5 unknowns.
One always needs n pieces of non-overlapping, non-contradictory
information to uniquely determine n unknowns in a linear sys­
tem. However, it has been previously noted that p and q can
not be uniquely determined, since adding any constant K to p
and subtracting the same constant K from q gives the same sum.
Thus, analysis of any system of the form indicated in (2) will not
produce a unique solution.

augmented
matrix for (2)

How many pieces of data must the analyst observe, in order to
‘identify’ lists p and q that can be used for predictive purposes? If
there is any hope of identifying the p,- and g,-, then these unknowns
must actually appear in the system: thus, one must observe at
least the first three values of y. This gives the linear system in
the five variables pH p2, pa, qi, and g2,

with matrix form

Pi + 9i = Pl

P2 + 92 = P2

P3 + 91 = P3 ,

■pr
1 0 0 1 0 P2 Pl
0 1 0 0 1 P3 — P2
0 0 1 1 0 91 _P3J

-92-

and with augmented matrix

1 0 0 1 0 Pl

0 1 0 0 1 • P2

0 0 1 1 0 •

P3.

(3)

Pay particular attention to the identity matrices and partial iden­
tity matrices that appear in the resulting augmented matrix. Sim­
ilar patterns will always emerge when investigating sums of peri­
odic lists.



61

The system in (3) has two degrees of freedom. Once values
axe chosen for ?i and g2, the remaining values px, p2, and ps are
uniquely determined:

Pi = Pi - 91

Pi = P2 - 92

P3 = !/3 — 91 •

It is readily checked that the resulting lists p and q do indeed sum
to give the first 3 observed values of y:

(Pl “91, 3/2 — 92, 3/3 — 91)

+ ( 91, 92, 91)

= ( Pl, P2, ya) ,

regardless of the choices made for qi and q2.

the identified
lists
are useless for
predictive
purposes

Can the ‘identified’ lists p and q be used to predict future values
of y? To investigate this question, use the lists p and q determined
in (3) to ‘predict’ a fourth value of y, giving

J/4 = Pi + 92

= (Pi - 91) + 92 •

Here is the critical observation: the predicted value of depends
on the choices made for qi and g2! That is, different choices of
3-cycles and 2-cycles that sum to give the first 3 observed values
of y, can lead to different predicted values for y4, as illustrated
next.

EXAMPLE For example, choosing

yields

Pi = 1, P2 = 2, y3 = 3, qi = 1, and q2 = 0

so that

Pi = Pi - 9i = 1 - 1 = 0

P2 = P2 - 92 = 2 - 0 = 2
P3 = P3 - 91 = 3 - 1 = 2

known predicted

(0,2,2,0) + (1,0,1,0) = (1,2,3, 0 ).
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Here, the first three (known) values of y are obtained; and one
‘predicts’ the value 0, based on the ‘identified’ periodic lists.
Alternately, choosing the same values for j/i, y2 and y2, but choos­
ing gi = 0 and q2 = 1 yields

Pi = 1 - 0 = 1
p2 = 2 - 1 = 1
p3 — 3 — 0 — 3

so that
known predicted

(1,1,311) + (O,1)O,1) = (1X?> )•

Here, the first three (known) values of y axe obtained; and one
‘predicts’ the different value 2, based on the ‘identified’ periodic
lists.
Thus, when only 3 values of y have been observed, any ‘identi­
fied’ periodic lists are useless for predictive purposes. Different
periodic lists can lead to different predicted values.

one more piece
of data is
observed

Suppose that one more piece of data, y4, is observed (and hence
now known). Then, p and q depend on the 4 numbers yi, y2, y3,
and y4.
The new system has the augmented matrix

1 0 0 1 0 : yi
0 1 0 0 1 : y2
0 0 1 1 0 : y3
1 0 0 0 1 : y4

(4)

NOTATION
= kRn + Rm

This augmented matrix is transformed, via Gauss-Jordan elimi­
nation, to a matrix for an equivalent system that is much easier
to analyze. The notation

R'm — kRn + Rm

is used to denote the row operation ‘replace (Row m) by (k times
Row n) added to (Row m)\ That is,

new Row m k times Row n old Row m

K? --= kRn + Rm
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The row operations below transform the matrix in (4) to reduced
row-echelon form:

— —/?1 + R4

R’4 = -R4

R'z — —R4 + R3

R'i — -R^ + R\

10 0 10
0 10 0 1
0 0 110
000-11

10 0 10
0 10 0 1
0 0 110
0 0 0 1 -1

10 0 10
0 10 0 1
0 0 10 1
0 0 0 1 -1

1 0 0 0 1
0 10 0 1
0 0 10 1
0 0 0 1 -1

yi

1/2

2/3

—2/1 +1/4.

2/1

2/2

2/3

1/1 - 2/4 .

2/1

1/2

-1/1 + 1/4 + 1/3

1/1 -1/4

1/4

1/2

-1/1 + 1/4 + 1/3

l/l -1/4

(zero first column)

(leading 1 in last row)

(zero third column)

(zero third column) (5)

The system in (5) has one degree of freedom. Once a value is cho­
sen for q2, the values of p1? p2, P3 and qr are uniquely determined:

Pi = 1/4 - 92

P2 = 1/2 — 92

P3 = ~1/1 + 2/4 + 2/3 — 92

91 = 1/1 - 1/4 + 92

Summing the ‘identified’ components, and using this sum to pre­
dict the next value of y gives:

( 1/4 — 92, 1/2 — 92> — l/i +2/4 + 2/3 — 92, 1/4 — 92, 1/2 — 92)

+ (1/1-1/4 + 92, 92, 1/1-1/4 + 92, 92, 1/1 - 1/4+ 92)

= ( 1/1, 1/2, 1/3, 1/4, 2/2 + 1/1 “ 1/4) •

The critical observation is that the predicted value for y5, y$ =
1/2 + l/i — 2/4, is independent of the choice of q2. Indeed, since each
entry in p is decreased by q2, and each entry in q is increased by
g2, all predicted values of y will be independent of q2.

fourth

fourth
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summary The example just completed points out some interesting facts. If
data is indeed a sum of a 3-cycle and a 2-cycle, then, having 4
pieces of data is ‘enough’ to use any identified components for
prediction, in the following sense: there will still be an infinite
number of periodic components that could sum to give the first
four observed values of y, but, no matter what components are
chosen, they will yield the same predicted values for y.

From a practical point of view, this type of information is vitally
important. Suppose that (say, based on preliminary data analy­
sis), it is conjectured that observed data is a sum of a p-cycle and
a g-cycle. IF:
• p and q are appropriately related (see Theorem 1);
• the observed data is truly a sum of a p-cycle and a g-cycle;
• enough data has been observed (see Theorem 1); and
• the investigator is able to identify any p-cycle and g-cycle that

sum to give the observed data;
then these cycles can be used for prediction. It will not matter if
they are indeed the ‘right’ cycles or not; since any choice yields
the same predicted values.

THEOREM 1 Suppose that y is a sum of a p-cycle and a g-cycle, where p and q
are positive integers satisfying p = kq + 1 for a positive integer k.
If p and q are any p and g-cycles (respectively) that sum to give
the first p + q - 1 observed values of y, then p and q can be used
to predict future values of y.

PROOF
of Theorem 1

The proof is constructive, and gives an algorithm for producing
all possible p and g-cycles that can sum to produce y. It is shown
that each entry of the p-cycle, p, must have an additive constant
K, and that each entry of the g-cycle, q, must have an additive
constant -K, thus proving that predicted values are independent
of the particular choice of components p and q.

Ini Om,n In what follows, the notation In is used for the n x n identity
matrix; and the notation 0mjn is used for the m x n zero matrix.
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P, q Let p and q be positive integers with p = kq+1 for a positive integer
k. Let p and q denote the p-cycle and g-cycle, respectively, with
entries

p = (xi,x2,x3,... ,Xp,ii,x2.---)

and
q= (w1,w2l... ,Wg,wi,w2)...) .

Suppose that p + q = y, where y has entries

y = ,yg....... yP>---) >

and suppose that the first p+q — 1 values of y have been observed.
The augmented matrix below is used to solve for the unknown
values of x,- and w,-:

The first p rows already have leading ones. Use these leading ones
to zero out the last q - 1 rows, via the row operations

7?p+i = -Ri + Rp+i , 1 < i < 9 - 1 •

This does not affect the first p rows, but gives the new last q -1 
rows:
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LAST
g-1

ROWS

COLUMN

ROW
p + 1

0 ... 0 -1 1 ..

0 0..

. 0

. -1

0 ...

1 ...

0 0 :

0 0 :

-yi + 1/p+i

~Vj + Vp+i

.0 ... 0 0 0.. . 0 0 ... -1 1 : -Vq-l +Vp+q-l-

p + j

Next, get leading ones in these last q -1 rows, via the row opera­
tions

Rp+i = ~Rp+j > 1 — J' 1 •

This gives the new last q - 1 rows:

ROWS

ROW
p + 1

COLUMN
p+j

LAST
g-1

0 ... 0 1 -1 . . 0 0 ... 0 0 : l/i - 1/p+i

0 0 . . 1 -1 ... 0 0 : yj - yp+i
•

.0 ... 0 0 0 . . 0 0 ... 1 -1 : 1/j-l ~ yp+q-1 -

Next, use the leading one in row p+1 to zero out the p+1 column,
via the row operations

Rjq+l = — R-p+l + Rjq+li 0 < J' < & •

Observe that kq + 1 = p. The first (p + q - 1) x p submatrix is not
affected by any future row operations, and is not shown. The
remaining matrix becomes:
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0
0

1
1

0
0

... 0

... 0
0
0

... 0

... 0
0
0

2/p+l

2/2

0 0 0 ... 0 0 ... 0 1 yq

0 1 0 ... 0 0 ... 0 0 -yi + yp+i + yq+i

0 1 0 ... 0 0 ... 0 0 yq+2

0 0 0 ... 0 0 ... 0 1 y2q

•

0 1 0 ... 0 0 ... 0 0 —yi + yp+i + j/(fc-i)?+i

0 1 0 ... 0 0 ... 0 0 y(k-V)q+2

0 0 0 ... 0 0 ... 0 1 yP-i

0 1 0 ... 0 0 ... 0 0 —yi + yP+i + yP <— ■ROW?
1 -1 0 ... 0 0 ... 0 0 2/1 - 2/p+l ■ROW p + 1
0 1 -1 ... 0 0 ... 0 0 2/2 - yP+2 ROW p + 2

0 0 0 ... 1 -1 ... 0 0 yj ~ yp+j

.0 0 0 ... 0 0 ... 1 -1 yq-l ~ Vp+q-l

Next, use the leading one in row p+2 to zero out the p+2-column,
via the row operations

-Ryg+1 = ~Rp+2 + Rjq+li

Rjq+2 - ~-Rp+2 + Rjq+2< 0<j<k—l ,

and
R^>+i = Rp+2 + Rp+i •

The resulting matrix is:



l-b+dfl _ x-bfi

'+dfl - ffi

£ + d MOIC+rf/S - Efi

Z + d moi

j + d MOI

Z+d/i _ Zfi

X+dfi + Z+dfi _ Z/J

d MOI

E+Kt-»)/£

z+b(x-’t)/i 4- z+dfi 4- Zfi-

i+Ki-?)/i 4- i+^/i 4- T/i - t+dfl 4- Z/S-

4z/I

E+i/i

z+bfi 4. z+dfi 4. zfi-

l+bfi 4. l+dfi +tfi_ Z+dfi 4. Zfi-

bfi

Efi

z+dn

X+dfi 4. z+dfi 4. Zfi—

: I— T ’” 0 0 ’” 0 0 0 0

: 0 0 ”’ T- T 0 0 0 0

: 0 0 ’” 0 0 T- I 0 0

: 0 0 ’” 0 0 ■” 0 I- T 0
: 0 O’” 0 O’” 0 I— 0 I

: 0 0 ”’ 0 0 ’” 0 10 0
T 0 ”’ 0 0 ’” 0 0 0 0

0 0 ”’ 0 0 ’” 0 100
0 0 0 0 ’” 0 TOO
0 0 ’" 0 0 "’ 0 TOO

T 0 0 0 0 000

0 0 ”’ 0 0 0 TOO
0 0 0 0 ’” 0 TOO
0 0 ’” 0 0 ■” 0 TOO
T 0 ’" 0 0 0 000

0 0 0 0 0 TOO
0 0 ’” 0 0 ’” 0 TOO
0 0 0 0 •” 0 TOO
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Continuing in this fashion, use the leading one in row p + m to
zero out the p + m column, via the row operations

— Rp+m + Rjq+l 1

Rjq+m — Rp+m + Rjq+m

Rjq+2 ~ “Rp+m + Rjq+2

Rp±l Rp+m 4" Rp+l

•Rp+(m-l) — Rp+m + Rp+(m-1) >

0 < j < k

0<j<k-l

for m = 3,— 1 ; applying this entire set of row operations first
for m = 3, then for m = 4, and continuing until m = q - 1.
The resulting augmented matrix is shown below. For simplicity,
the right-most column makes use of the notation where /,• :=

,yP+q-i) is an expression that depends on the numbers ja
through !/P+?-i, for i = 1,... ,p+q -1. The particular form of these
expressions is not necessary to the desired conclusion. Instead,
the important observation is the p + g-column of 1’s and -l’s:

COLUMN
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The equivalent system represented by this augmented matrix has
one degree of freedom. Once a choice is made for the remaining
unknowns xi,... ,xp and wi,... ,w?_i are uniquely determined:

xi = A - wq 

xp = fp~ wt

W1 = /p+l + Wq

Wq-1 = fp+q-l + Wq .

Since each entry of p is decreased by wq, and each entry of q
is increased by w?, the sum p + q is uniquely determined by the
numbers yi through yp+q-i, and hence future values of the sum
axe uniquely determined. |

It is interesting to note the following:

PROPOSITION Let p, q and k be positive integers with p = kq + 1. Then, p and q
p = kq + 1 are relatively prime.
implies that
p and q are
relatively prime

PROOF
of Proposition

Suppose for contradiction that p and q have a common factor other
than 1. That is, suppose there exists a positive integer j / 1 for
which both p = jx and q = jy; here, x and y denote the remaining
primes in the prime decompositions of p and q, respectively. The
following list of equivalent equations is then obtained:

p = kq + 1 jx = k(jy) + 1
j(x - ky) = 1

, 1x - ky = - .
J

Since x, k and y are integers, and the integers are closed under
addition and multiplication, x - ky is an integer. However, 4 is
not an integer. Thus, the last equation x - ky = 4 is false. By
hypothesis, however, the first equation p = kq + 1 is true. This
gives the desired contradiction. |

Thus, the requirements on p and q in Theorem 1 force p and q to
be relatively prime.
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conien/s of
the next two
sections

The next section provides a thorough investigation of the sine
and cosine functions. These functions have been of great his­
torical importance in the context of periodicity. Also, they will
become important at the end of Chapter 2 and in Chapter 3,
when studying the periodogram of a data set, and mathematical
filters.
The chapter closes with a discussion of historical contributions in
the search for hidden periodicities.
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1.6 Sinusoids

a point
traveling around
the unit circle

The x and y coordinates of a point traveling around the unit
circle x2+y2 = 1 exhibit periodic behavior: after each revolution,
the coordinates of the point repeat. This simple observation
is the basis for the definitions of the important, periodic, sine
and cosine functions.

DEFINITION
sine function;
cosine function

Let t be any real number. Identify this real number t with a
point on the unit circle C: x2 + y2 = 1, as follows:
• Start at the point A := (1,0).
• If t > 0, lay off an arc of length t, in the counter-clockwise

direction, on C.
• If t < 0, lay off an arc of length |i|, in the clockwise direction,

on C.
• Denote the point on C at the terminal end of the arc by

B. In this manner, every real number t is associated with
a point B on the unit circle.

Define the cosine function cos: R-4-1,1] by

cos t := the r-coordinate of B ,

and define the sine function sin: R [-1,1] by
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EXAMPLE Since the unit circle has circumference 2tt, the real number
t = f corresponds to the point (0,1) on C; hence, sin f = 1 and
cos = 0.
The number t = -f corresponds to the point (5,-^) on C;
hence, sin(-f) = and cos(-f) =

x-coordinate = 0
y-coordinate = 1 ^-coordinate =

graphs of
the sine
and cosine

The sine and cosine functions are graphed below. Since all real
numbers t ± 2?rfc, k e Z, are associated with the same point on
C, one has

sin(Z ± 2irk) = sin t and cos(t ± 2irk) = cos t VieR, fcGZ.

The fundamental period of both the sine and cosine functions

-1
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measures
for angles
radian;
degree;
grad

The process of identifying a real number t with a point on the
unit circle C forms an angle in a natural way: use the positive
r-axis as the beginning side of the angle, and the ray through
the origin and B as the terminal side of the angle.
By definition, the number t is the radian measure of the angle
thus formed. Therefore, the radian measure of an angle is a
real number that represents a (signed) arc length on the unit
circle. Note that 2ir radians equals one complete revolution.
The degree measure of an angle is defined by dividing one com­
plete revolution into 360 equal parts: by definition,

1° = -4- revolution .
360

Thus, (2?r radians) = 360°.
The grad measure of an angle is defined by dividing one com­
plete revolution into 400 equal parts: by definition,

1 grad = revolution .

Thus, 400 grad = 360° = 2tt radians. Only the radian measure
of an angle will be used in this dissertation.

DEFINITION
sinusoid

In this dissertation, a sinusoid is a function of the form

asin(6/ + c) or a cosfbt + c) ,

for real numbers a, b and c with a / 0 and 6/0.

fundamental
period;
phase shift;
amplitude

Let f(t) denote either asin(6t + c) or acos(6i + c).
The function f makes one complete cycle as the argument of
the sine or cosine goes from 0 to 2tt. Observe that bt + c = 0
when t = -f ; and, bt + c = 2% when t = 2^. The resulting time
interval has length |2^ - (-£)| = |^|. The positive number
|^| is the fundamental period of f.
The number -f is the phase shift of f. Observe that asin(6f+c) =
asin[6(t + f)], so the curve y = asin(6i) is shifted f units to the
left (if f > 0), or f units to the right (if f < 0) to obtain the
curve y = asin(6f + c). A similar statement holds for a cos{bt + c).
For all real numbers t, |/(Z)| < |a|, and on any interval of length
|^|, the function f takes on the values ±|a|. The number |a| is
the amplitude of f.



75

Two sinusoids are graphed below.

A > 0
a; > 0

0 < </> < 7T

non-uniqueness The representation of a sinusoid in the form asin(bt + c) or
of representation acos(bt + c) is not unique. For example, for all real numbers a,

b and c with a / 0 and 6/0, and for all integers k,

a cos(6t + c) = asin(6i + c + —)At
a cos(6t + c) = — a cos(6t + c ± tt)
a sin(6t + c) = — a sin(—bt — c + 2irk) .

However, appropriate restrictions can be placed on a, b and c
so that a unique representation is obtained. This is the content
of the next proposition.

Proposition 1
unique
representation
for a sinusoid

Every sinusoid has a unique representation in the form

A sin(wt + </>) ,

for A > 0, w > 0, and -ir < <j> < tt.
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FLOW CHART for PROPOSITION 1

k evenk even

; /(f) = Asin(|5|f — c + 7r)

|c| > tt; write |c| = kir +

for a positive integer k

and 0 < </> < it

c = 7T

f(t)==Asin(u?f — 7r)

/(f) = asin(&f 4- c) or /(f) = acos(6f + c) for a 0, b 0 0

k odd k odd
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For all real numbers t and odd integers k,

(1)
(2)

PROOF
an algorithm
for obtaining
the desired form

• zcos t = sin(< + —)£
sin(/ ± kir) = — sin t .

These facts are used freely in the following proof.

Let f be any sinusoid. Thus, f is of the form f(t) = a sin(6f + c)
or f(t) = acos(6< + c) for real numbers a, b and c, with a/0 and
6/0. The algorithm presented next produces a representation
of f in the desired form. The flow chart on page 76 summarizes
this algorithm.

If/(t) = a cos(bt + c), then

f(t) = a cos(bt + c) —■*  a sin(6f + c + ;
£

this implies that / can be written in the form asin(6< + c) for
a / 0, b / 0, and c G R.
If a < 0, so that a = -|a|, then

asin(6t + c) = —|a|sin(6f + c) *=  |a| sin(6i + c + it) ;

thus, f is in the form Asin(bt + c) for A > 0, 6 / 0, and c G R.

If b < 0, so that b = -|6|, then use the fact that sin(-t) = — sini
for all t, so that

z4sin(6t + c) = z4sin(— |6|t + c) = Asin[(—l)(|6|t — c)]
= — j4 sin(|6|t - c) =*  Asin(|6|t — c + tt) .

As a result, f can be put in the form z4sin(wt+c) for A > 0, u > 0,
and c G R.

If c = tt, then
Xsin(wt 4- tt) = Asin(w/ — tt) .

If |c| > TT, then |c| = kir + <f> for 0 < </> < tt, for a positive integer k.
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If c > 0, so that |c| = c, and k is an even integer, then

A sin(w< 4- c) = A sin(w/ + |c|) = A sin(wZ + kir + 0) = A sin(u/ + 0) .

If c > 0 and k is odd, then

A sin(w/ + c) = A sin(wt + kir + 0) (= -A ain(wt + <£)=? A sin(wf + <j> - ir) ;

since 0 < </> < ir, it follows that —tt <(</> — ?r) < 0.
If c < 0, so that c = —|c|, and k is even, then

j4sin(wf + c) = .Asin(wi — |c|) = j4sin(wZ — kir — fa) = ylsin(wt — fa) ;

and if c < 0 and k is odd, then

Asin(w/ + c) = >lsin(wi — |c|) = >lsin(u/ — kir — fa
(2) (2)= — .Asin(wi — fa =■ ^4sin(wf — <j> + ir) .

Since 0 < <f> < tt, it follows that 0 < -</>+ir < ir. The only way that
—0 + ir can equal ir is if <f> = 0, in which case /(t) = Asin(wi - kir)
for an odd integer k, so that f(t) = Asm(wt - tt).

In all cases, f has been written in the form .<4sin(i<4+0) for A > 0,
w > 0, and —ir < </> < ir.

uniqueness of Let Ai, A2, wi and u>? be positive, and let 0i and fa be in
the representation the interval [— tt, tt). Two sinusoids with different amplitudes or

frequencies cannot be equal, hence

j4i sin(wi< + 0i) = A 2 sinful + 02) ==^ (-di = -^2) and (wj = uf) .

If
j4sin(w/+ <^i) = J4sin(w< + ^2) V t , —ir<f>i<ir,

then for t = 0, one obtains Asin^i = J4sin<^2, from which sin<£i =
sin fa\ and for t = one obtains sin(|- + fa) = sin(| + fa). An
analysis of the sketch below illustrates that the only way that
both sin<^i =sin<02 and sin(f + fa) = sin(f + fa) can be true, when
0i and fa are in the interval [-ir, %), is for fa = fa . |

-1
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NOTATION
A sin(wt + <f>)

Whenever the notation Asin(w< + <£) is used in this dissertation,
it is assumed that A > 0, w > 0, and —tt < 0 < tt.

frequency
of sinusoids

The word frequency is often used in the context of sinusoids
for two different types of frequencies. To prevent any possible
confusion with regard to this word, the following definitions
and notation are set forth.

DEFINITION
oscillation;
cyclic
frequency, f

Suppose that a periodic function g has fundamental period P.
Then, the function passes through all possible function values
on any interval [t,t + P), and the function is said to have made
one oscillation.
The cyclic frequency of g is denoted by /, and is defined by

DEFINITION
radian
frequency, u

The radian frequency of Asin(u4 4- <£) is the positive number w.

relationship
between
cyclic and radian
frequencies

These definitions imply that cyclic frequency can be computed
for any periodic function, whereas radian frequency can be
computed only for sinusoids. Note that cyclic frequency tells
how many cycles the function makes in unit time.

Since the function Asin(urt + <£) has fundamental period the
relationship between radian frequency and cyclic frequency is
given by f = , i.e.,

w = 2irf .

NOTATION
w, f

Whenever the variables w and f are used in the context of
sinusoids, they will always denote radian and cyclic frequency,
respectively.
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Thus, many commonly-appearing sinusoids will take the form

sinwt or sin27r/Z .

Note that
. 2irt . „ , 1.sin — =sin2T(-)i

has fundamental period P.

trigonometric For the convenience of the reader, some important trigonomet-
formulas ric identities are summarized next. For all real numbers t, a,

and /?,

sin(—t) = — sint
cos(—Z) = cosZ

sin21 + cos21 = 1

addition
formulas

double-angle
formulas

half-angle
formulas

sin(a ± /?) = sin a cos 0 ± cos a sin /?
cos(a ± (3) = cos a cos 0 sin a sin 0

sin 2/ = 2 sin tcost
cos 2Z = cos21 — sin21 = 1 — 2 sin21 = 2 cos21 — 1

. t , /1 — cos t
SI°2=:tV—~

t , 11 + cosZ
CO85 = ±V——

In the half-angle formulas, the correct choice of sign is deter­
mined by the location of the point on the unit circle associated
with Z/2.
For example, letting t = ir,

. TV 11 — COS ItSln2=+1/—5—= 1,

since the point determined by Z/2 has a positive y-coordinate.



81

Fourier series
results
for continuous
functions

Letting t = ,

. 5ir 11 — cos 1
4 V 2 >/2

since the point determined by t/2 has a negative y-coordinate.

The importance of sinusoids is largely due to the fact that any
continuous periodic function can be well-approximated by a
sum of sinusoids. The interested reader is referred to any real
analysis text, say [Bax, 330-345], for proofs of the following
classic results:

DEFINITION
piecewise
continuous
periodic function

Let g be a periodic real-valued function of one real variable,
with fundamental period P. The function g is piecewise con­
tinuous on R if g is defined and continuous on R, except possibly
for a finite number of points ti,... ,tn in any interval of length
P, at which g has both left and right hand limits,

g(tf) ■= 1™. 9(ti - h) . grt) := lim g(t{ + h) ,
h—»0+ h— 0+

where the notation h —♦ 0+ means that h approaches 0 from the
right-hand side.

DEFINITION
Fourier series
for g

Let g be a periodic real-valued function of one real variable.
Suppose that g is piecewise continuous on R, and has funda­
mental period P.
The Fourier series of g is the infinite sum

y+ 22(a*C0S_p_ + 6fcSm_p_) ’ (CFS)

where the Fourier coefficients at and 6*  are given by the formu­
las

2 f 2irkt 2 [ . 2irktat = 9\t) cos —— at , bk = — g(t) sin —— dt .
•* JP <* * Jp *

The notation fp is used to mean that the integral may be eval­
uated over any interval of length P.
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comments on
the definition

fundamental
period;
fundamental
frequency;
harmonics

Pointwise
Convergence
Theorem

The label (CFS) stands for continuous Fourier series.
The requirement that g be piecewise continuous guarantees
that the integrals defining ak and bk exist.
Since g has fundamental period P, and the functions cos 2z£t and
sin 2^1 have a period P, the integrands in the integrals defining
ak and bk have a period P. This is what makes it possible to
integrate over any interval of length P.
Any function g defined on a finite interval [a, 6) can be extended

Note that the arguments of the sinusoids in thie Fourier series
axe of the form

2ttM „ ,, 1.
— = 2^--)f ,

so that the cyclic frequencies are multiples of p. In this context,
P and p are called the fundamental period and fundamental
(cyclic) frequency, respectively, of the series. The multiples of
the frequencies are called the harmonics.

The next two theorems describe the relationship between the
function g and its Fourier series.

Let g be a periodic real-valued function of one real variable.
Suppose that g is piecewise continuous on R, and has funda­
mental period P. Suppose further that g has right and left-hand
derivatives at c G R; that is, both

lim g(e + ft)-g(e^) lim g(C-ft)
h— o+ h />—o+ h

exist.
Then, the Fourier series for g converges to |(p(c“) + p(c+)) at c.

In particular, if g is continuous at c, then the Fourier series for
g at c converges to ^(c).
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Gibbs’ With only pointwise convergence, as guaranteed by the previ-
phenomenon ous theorem, some undesirable types of behavior can occur. To

illustrate what can ‘go wrong’, consider the function

= -0.5
0.5

for - ir < t < 0
for 0 < t < it .

Extend g periodically to all of R, call this extension by the same
name, and form its Fourier series. Observe that g meets the
hypotheses of the Pointwise Convergence Theorem. Let c be
any number in the interval (0, tt). Via pointwise convergence,
the Fourier series for g must converge to g(c) = 0.5 at x = c.
Therefore, if e is any positive number, there exists a positive
integer N such that whenever n > N,

ao 2irfcc . . 2irkcy + > , ak cos —— + bk Sin -y
*=i

-0.5

where the a*  and 6*  are the Fourier coefficients. Unfortunately,
however, somewhere in the interval (0,c), the truncated Fourier
series will always take on a value that overshoots 0.5 by more
than 0.089; and that undershoots 0.5 by more than 0.048 [HamD,
107-109], as illustrated below. This behavior, known as the
Gibbs’ phenomenon (after J. Willard Gibbs, who first publi­
cized the effect but was not the first to publish it), is typical
of the behavior of any truncated Fourier series near a jump
discontinuity. An understanding of this behavior will become
important in Chapter 3, when designing mathematical filters.

-5 0
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uniform
convergence

Uniform
Convergence
Theorem

A much more desirable type of convergence is uniform conver­
gence. Roughly, a sequence of functions converges uni­
formly to g if, given any t-envelope about g, one can get all the
functions gn from the list to lie entirely within this c-envelope,
providing that n > N for some sufficiently large positive integer
N.
With slightly stronger hypotheses on g, one can actually get
the Fourier series of g to converge uniformly to g:

Let j be a periodic real-valued function of one real variable,
defined on R. Suppose that g is continuous with fundamental
period P, and suppose that the derivative g' is piecewise contin­
uous on R. Then, the Fourier series for g converges uniformly
to g on R. That is, for every e > 0, there exists a positive integer
N such that for all n > N and for all t 6 R,

«o v’' . 2irkt
~2 + > .a* cos ~p~ + sm ~p~

The formulas for the coefficients ak and bk of the Fourier series
can be derived by:
• assuming that a series of the form (CFS) exists and rep­

resents g;

/.x ao v-'z 2ttH , . 2ttHx
9(t) = -^ + 2^{ak cos —p~ + bk sin —p-)

k=i

• multiplying both sides of this equation by cos (or sin
for a fixed integer m;

• integrating over one period; and
• using the following orthogonality properties of the sine and

cosine: for all positive integers n and m,

if n / m
if n = m

[ . ,2irnt . ,2irmt. f 0
Jp sin(-p“) dt = [ p

[ . 2irnt 2irmt
Jp 81n(~p“) cos(“dt = 0

if n / m
if n = m

V n,m .

These orthogonality properties cause most of the terms in
the sum to vanish.
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This same procedure will be followed in the derivation of the
coefficients for the discrete Fourier series in Chapter 2.

The Fourier series also has the following desirable property:

The complex exponential function is defined by

THEOREM 1
a finite
Fourier series
minimizes the
mean-square error

[Weav, 113] Let g be a periodic real-valued function of one real
variable. Suppose that g is piecewise continuous on R, and has
fundamental period P. If g is approximated by any finite series
of the form

_ . . a0 v'' ! . ■ 2ttH\
Sn(1) ■= y + > , cos —p~ + bk s’n —p~J

for real coefficients a*  and 6*,  then the best approximation in
terms of the mean-square error is obtained when the Fourier
coefficients are used for at and bk. That is, the mean-square
error between Sn and g, defined by

fp(g(t)-SN(t»2dt ,

is minimized when Sn is the Nth partial sum of the Fourier
series for g.

cosine and sine
as the real and
imaginary parts
of the complex
exponential
function

elt := cosi + isinf ,

for all real numbers t, and for i := >/-L. Thus, e“ is a complex
number, with real part equal to cost, and imaginary part equal
to sint.

The Complex Plane
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Here are some important consequences of this definition. Using
the identities cos(-t) = coat and sin(-t) = - sinJ, one obtains:

elt — cost + isint (1)
e-,< — cost — isint . (2)

Adding (1) and (2), and dividing by 2, gives

That is, e‘‘+e-i< = 2-Re(e’‘), where Re(e* ‘) denotes the real part
of e‘‘. The geometric interpretation of this identity is shown
below.

e* + e~if = 2 • Re(ert)

Subtracting (2) from (1), and dividing by 2i, gives

e’* — e-,‘
Sin< = —2f—-

That is, eu - e-i‘ = 2i • Im(e’‘), where Im(e<‘) denotes the imagi­
nary part of e* ‘. The geometric interpretation of this identity
is shown above.
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The identity in the next proposition reflects an important prop­
erty of equal-spaced sampling from the complex exponential
function. This identity will become important when discussing
the discrete Fourier series in Chapter 2. Here’s a geometric in­
terpretation of the identity: let N be a positive integer greater
than 1, and let k be a fixed integer between 1 and N -1. Then,
the complex numbers

1 ,
e2rk«(Jr)

e2%ii(£)

e2ri«(£) ,

e2rii(i^l) ,

divide 2nk revolutions of the unit circle in the complex plane
into N equal arc lengths. When these complex numbers are
summed, the result is 0. The result is illustrated below for two
different combinations of k and N.

k = 2

Proposition 2 Let N > 1 be a positive integer, and let k be a fixed integer
between 1 and N - 1. Then,

N-l N-l
£2 e2rki(^ = 0 and ^2 e-2’rt,(^) = 0 .
n=0 n=0
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PROOF
of Proposition 2

Recall that, for all complex numbers x ± 1,

1 - tn

1 - X

Let x = e2**^  ; since k < N, x is not equal to 1. Then,

N-l N-l
e2’rfc,(w) = 52

n=0 n=0

1 - X
1 _ e2*H(£)

1 — X

since e2’** = 1 for all integers k. Letting x = e~2*k'(& and re­
peating the argument completes the proof. |

sums of
sinusoids

Next, some questions concerning arbitrary sums of sinusoids
are addressed.

In Question 3, Section 1.4, two periodic functions, each with
fundamental period 4, were summed to yield a periodic func­
tion with fundamental period 2. Thus, the period of a sum
certainly need not be the least common multiple of the sum­
mands. However, the following theorem, from [C&P, p. 35],
shows that sinusoids are considerably nicer in this respect.

THEOREM 2 Let Pi,P2)... ,Pm be distinct positive integers, and let

A 2?rt . 27rt
3(0 = > , ak cos — + Ofc sm — ,

fc=i * *

where at and bk are real numbers, not simultaneously zero (a| +
> 0). Then, g is periodic, and has fundamental period equal

to the least common multiple of the integers Pi,... ,Pm.

EXAMPLE
actual period
versus
apparent period

Consider the sum

= sin27r(|)t 4-sin2ir(^-)t .
0 0.1

Using Lemma 3 in Section 1.4, scaling g by s = 10 produces the
scaled function

g,(t) = sin 2ir(l-)t + sin27r(^-)i .
OU 01
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Using Theorem 2, the scaled function g, has fundamental pe­
riod equal to the least common multiple of 50 and 51, i.e.,
50-51 = 2550. Then, using Lemma 3 in Section 1.4, g has funda­
mental period —1 = 255. The first graph below shows that the
function g certainly ‘appears’ to have period 5. The remaining
graphs illustrate that g actually has period 255.
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‘apparent’
sinusoids

It is interesting to note that when two sinusoids with close
amplitudes >1 and A + AA, close fundamental periods P and
P+AP, and close phase shifts and <^+A0 are summed, then the
resulting function ‘appears to be’ (at least initially) a sinusoid
with period P, amplitude 2>1, and phase shift <t>. The following
MATLAB function can be used to ‘play with’ this observation:

MATLAB
implementation
sums of
sinusoids

Let k be a positive integer, and let

A > 0 , P > 0 , — ir < < Tt

AA > 0 , AP > 0 , A<£ > 0 .

The following MATLAB function takes the inputs k, A, P, <f>,
AA, AP, A<£, and plots a function y, where

fc-i
y = 52(A + nAA) sin(2a-(--'-^)t + (</> + nA^)) .

n=0

An example of the use of this function is given.

function [t,y] testsum(k,A,P,phi,dinArdinP,dinphi)
% k = number of sinusoids in sum
% A = amplitude of first sinusoid
% P = fundamental period of first sinusoid
% phi = phase shift of first sinusoid
% dinA = difference in amplitude between sinusoids
% dinP = difference in period between sinusoids
% dinphi = difference in phase shift between sinusoids
% The sum is plotted over an interval 4P.
t = [-2*P:(P/100):2*P];
y = A*sin(2*pi*(1/P)*t + phi);
for n = 1:(k-1)
y = y + (A+n*dinA)*sin(2*pi*(1/(P+n*dinP))*t + phi + n*dinphi) ;
end
plot(t,y) =

[t,y] = testsum(2,2,10,pi/3,.2,.5,pi/30)

endfunction
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aliasing

a circular
spinning wheel

The last topic to be considered in this section is that of equally-
spaced sampling from sinusoids, which can give rise to a phe­
nomena known as aliasing.

The English usage of the word ‘alias’ as a norm means an as­
sumed name. Generalize this usage a bit to mean an assumed
appearance. With this generalization, the name ‘aliasing’ to
describe the following phenomenon should seem very appro­
priate.

Anyone who has watched Westerns on television and focused on
the wagon wheels has observed that as these wheels turn faster
and faster, they may actually appear to slow down, or even to
stop or reverse direction, as the wagon’s speed increases. This
assumed appearance (alias!) is due to equally-spaced sampling
of the pictures in time, as described below.

Imagine a circular wheel with one spoke which is spinning at
some uniform rate, say, once every T seconds, in a dark room.
If one was to flash a light precisely every T seconds (or any
multiple of T seconds) then one would see the spoke in the
same position each time, and perhaps perceive that the wheel
was not spinning at all.

Now let S be a little bit less than T, and flash the light every
S seconds. The first time the light flashes, the spoke is seen in
some position. Then, S seconds later, the spoke has not quite
reached that same position, so it appears to have backed up a
little bit. Another S seconds, and it appears to have backed up
a bit more. Thus it appears to be moving backwards slowly
(which is, of course, not the case at all!)

One more time. Now let S be a little more than T. The first
time the light flashes, the spoke is seen in some position. Then,
S seconds later, the spoke has gone around once and a little bit
more, so it appears to have moved forward slightly. Continue.
The spoke appears to be moving forward at a rate that is much
slower than the actual rate.

In the previous scenarios, it is said that one frequency has been
‘aliased’ into another frequency due to the process of taking
equally spaced samples.
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aliasing of
sinusoids

complete
description
of all sinusoids
that pass through
the same
equally-spaced
sample points

The same kind of aliasing can occur when one takes equally-
spaced samples from sinusoids. Consider for example the sam­
ple data points below.

These sample points could have come from either of the sinu­
soids shown.

It is possible, in fact, to completely describe all the sinusoids
that will pass through the same equally-spaced sample points.
Let

Xsin(27r/f + ,

be any sinusoid with amplitude A and cyclic frequency f.
Suppose that data samples are taken at intervals of time T; that
is, at times kT, for all integers fc. Let m denote any integer, so
that mk is also an integer. Then,

Asin(2irf(kT') + <f>) = A sin(2ir kTf + </>)
= A sin(2irkTf + 2irmk + <£)
= J4sin(27rfcT(/ + ^)4-^)

Kl

= >lsin(27rA:71(/ + ^7) + 0)

Comparing the sinusoids

A sin(27r f(kT') + <f>)

and
>lsin(27r(/ + ^)(kT) + <£)

shows that the sinusoids Asin(27r/t-|-^) and J4sin(27r(/+y)i+^) are
indistinguishable for every integer m with respect to samples
taken at intervals of time T.
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The final theorem of this section is the famous Sampling The­
orem [S&H, 45-49], which relates sampling rates to truncated
Fourier series:

SAMPLING Let f be a stun of harmonically related sinusoids,
THEOREM

x ao v"'' ( 2irkt . . 2irkt\
/(*)  = ~2 + > , cos — + b* sin — ] ■

To be able to recover / exactly, it is necessary to sample at a
rate greater than twice the highest harmonic number K. That
is, letting N denote the number of (equally-spaced) samples in
a fundamental period P, one must have N > 2K.



1.7 Historical Contributions in
the Search for Hidden Periodicities
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The purpose of this section is to highlight the historical developments in the
search for hidden periodicities. In so doing, it provides a gentle introduction
to some important ideas that will discussed in greater detail throughout the
dissertation. The presentation is chronological.

The debut of the sine function. The ‘triangle’ approach to trigonometry ap­
peared long before the emergence of the sine as a function of a continuous vari­
able. In about 160 B.C. the Greek astronomer Hipparchus investigated the com­
plete measurement of triangles from certain data. Originally, one spoke not of
the sine of an angle but instead of the sine of an arc, as follows: consider the
circle below, with center O and arc AB. The length of the line segment AM was
defined to be the sine of the arc AB [New, 18]. Why the word ‘sine’? Observe
that the highlighted shape resembles a stretched bow; indeed, the word sine de­
rives from the Latin sinus, which means a bend [Oxf]. The word cosine uses the
Latin prefix ‘co’, meaning in the company with, so that ‘cosine’ means in the
company with the sine.

The view of sine and cosine as functions of a continuous variable is more advanced;
it requires the use of a coordinate system to determine the appropriate signs (plus
or minus) of the trigonometric functions for angles greater than ninety degrees.
This tool was not available until Rene Descartes (1596-1650) introduced what
is now called the Cartesian coordinate system. With this graphical device, the
center of the circle described above could be placed at the origin of the coordinate
system, with segment OB along the x-axis (see above). The ratio ^fngthVfo^
was known to be invariant under circle size, and is now known as the radian
measurement of the angle. Call this ratio u. Then, the ratios of cm := r an<^-
fogth of om •= - were defined as the sine of u and cosine of u, respectively, and
length of OA r e
these definitions could be preserved by paying attention to the signs of x and y
in the various quadrants. Thus, sine and cosine became separated from a study
of triangles; the trigonometric functions had emerged [New, 39].
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1500s—1600s: Interest in naturally-occurring periodic phenomena.
During the 16th and 17th centuries, investigations into many naturally occurring
physical problems helped to forward the interest in periodicity. Johannes Kepler
(1571-1630) derived the three basic laws of planetary motion that bear his name;
for example, his law of periods states that the square of the period of a planet’s
orbit about the sun is proportional to the cube of the planet’s mean distance from
the sun [H&R, 262]. Galileo (1564-1642) observed that the periodic oscillation
of a pendulum was independent of the mass of the suspended weight. Issac
Newton (1642-1727) explained sound in terms of periodic waves [New, 412]. But
the basis for modem theories of periodicity was to come in the 1700s, with the
development of Fourier series.

1700s: Developments due to a vibrating string. Fourier analysis, which
involves the representation of a function as a sum of sinusoids, is fundamental
to many modem methods concerned with detecting hidden periodicities. Thus,
early developments by Jean LeRond d’Alembert (1707-1783), Leonhard Euler
(1707-1783), Daniel Bernoulli (1700-1782), Joseph Louis Lagrange (1736-1813),
and Jean-Baptiste-Joseph Fourier (1768-1830) are important. This period of
time is well documented, and the interested reader is referred to [Jef], [Car, 1-
19], and [Gon, 427—441] for additional information.

It was interest in the partial differential equation (PDE) now known as the one­
dimensional homogeneous wave equation,

utt - c2uxx = 0,

that led to the first investigations into the trigonometric expansion of a function.
A solution u(M) of this PDE gives the displacement of a particle at distance x
on a vibrating string at time t.

In 1746, the French mathematician d’Alembert obtained the solution

u(i,i) = |[/(x + ct) + f(x - ci)]
A
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for an infinite length string, with zero initial vertical velocity and initial con­
figuration u(o:,0) = /(i). The constant c depends on the string material. This
solution was arrived at by a change of variables, and required no trigonomet­
ric series results. Thus, existence of a solution (at least in the infinite length
case) was established; the controversy that waged over the next couple decades
concerned the form of the solution.

In 1753, Bernoulli [Ber, 173] claimed that the solution u(x,t) for a finite string of
length I is expressible in the form

, v”' . ■ kirctu(x, t) = } j Ak sin —— cos —— .
k=l ‘ ‘

This is the form obtained when one pursues the modem ‘separation of variables’
technique. When t = 0, this reduces to an expression for the initial string dis­
placement in the form

“ kirr
u(x,0) = ^djtsin— .

4=1 *

Bernoulli believed that any initial displacement could be written in this way.
Euler and d’Alembert disagreed: they argued that since sums of sine functions are
both periodic and odd, any function which did not possess both these properties
could not be expanded in such a way. Thus began the animated debate over the
representation of a function as a sum of sinusoids.

In 1777, Euler showed that if a function /(z) could be represented in the form

1 kirx , . kirx.
xao + cos — + bk sin —)
2 4=1 ‘ ‘

then the coefficients must be given by

ak = 7 / f(t) COS di , bk = yf /(t) sin dt .

However, it was Fourier, in his investigations of the PDE modeling the temper­
ature distribution in a metal plate, who first applied these integral formulas to
the representation of a completely arbitrary function. In particular, Fourier al­
lowed the function to have different analytical expressions in different parts of
the interval. Also, he was the first to recognize that the use of sine series was
not restricted to odd functions; and the use of cosine series was not restricted to
even functions.

Further work by Cauchy (1789-1857), Dirichlet (1805-1859), Weierstrass (1815-
1897), Riemann (1826-1866), Jordan (1838-1922), Cantor (1845-1918), and
Lebesgue (1875-1941) passed into the realm of the pure mathematician. These 
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people made precise the notions of convergence, uniform convergence, functions,
and integration which had been somewhat loose in earlier work, and thus laid
the foundation for all modern analysis.

Backing up a bit in time, one of the first methods for detecting hidden peri­
odicities was used by Lagrange in 1772 to analyze the orbit of a comet [Lag].
Lagrange had a good deal of interest in rational functions; one may recall the
Lagrange Interpolation Formula [S&B, 39]

= nFr-fcj to1’

for the unique polynomial passing through n + 1 distinct data points (x«,/i)”=o-
Thus it should not be surprising that Lagrange’s method used rational functions
to analyze the data. Lagrange’s method was improved by Dale [Dale, 628] in
1778.

The next major contributions appeared in the mid 1800s, and are discussed in
some detail in the following two sections.

1850—1900. Tabular methods for detecting hidden periodicities.
In 1847, Buys-Ballot introduced a tabular method for detecting hidden period­
icities that was used in his analysis of temperature variations [B-B, 34]. These
methods were further developed by Strachey in 1877 [Str] and Stewart and Dodg­
son in 1878 [S&D]. The next example illustrates the ‘flavor’ of these tabular meth­
ods; note the similarity to the reshaping techniques discussed in Section 1.3. For
more details, the reader is referred to [W&R, 345-362].

The scatter plot in Figure la shows sixty unit-spaced data points; consecutive
points have been connected by line segments in Figure lb. This data was gener­
ated by the function

y(x) = 2sin(^^) + cos(^^) + noise ;
0 lo

thus, it is a sum of a period 5 sine curve of amplitude 2, a period 13 cosine curve
of amplitude 1, and noise, generated by the uniform distribution on [-.2, .2]. Now
that you are privy to the generator of the data, forget it. The question is: “With
only the sixty data points at hand—is it possible to recover any information
regarding sinusoidal components?”
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Figure la. A scatterplot of a function with
two sinusoidal components, and noise.

Figure lb. The data at left, with consec­
utive points connected by line segments.

The approach taken is roughly as follows: for a given period p, get a number that
reflects ‘how much’ this period is present in the data. Repeat the procedure for
lots of values of p and plot the results. The graph should peak at periodicities
that are present in the data.

For example, let us test the data of Figure 1 for period 5. Let (i,y.) denote the
ith data point. First the data {yi, y2,2/3,. - • ,s/eo} must be arranged into rows of 5;
there will be 60/5 such rows, as shown.

yi V2 2/3 2/4 2/5
ye yr 2/8 2/9 2/10 2.6752
yn 2/12 2/13 2/14 2/15 0.8846
yi6 2/17 2/18 2/19 2/20 2.4821

1.9896
y2i 2/22 2/23 2/24 2/25 1.1644
2/26 2/27 2/28 2/29 2/30 — 3.0662
2/31 2/32 2/33 2/34 2/35 1.0849

1.92152/36 2/37 2/38 2/39 2/40 2.2993
2/41 2/42 2/43 2/44 2/45 1.0378
2/46 J/47 2/48 2/49 2/50 2.6542
2/51 2/52 2/53 2/54 2/55 1.7094
yse 2/57 2/58 2/59 2/60

1.5625 -0.9835 -2.1850 -0.5746
0.2124 -1.7917 -2.4429 -0.0581
2.1295 -0.3725 -1.0633 0.3948
0.8957 -1.8885 -2.7009 -0.8325
0.6578 -0.9935 -1.3676 0.9659
2.1659 -0.7025 -1.9626 -0.2602
0.2577 -2.0439 -2.4542 -0.4085
1.9367 -0.2011 -0.8008 0.9461
1.3488 -1.3763 -2.7415 -0.9964
0.4182 -1.6351 -1.8716 0.5118
2.1702 -0.1311 -1.1704 -0.0552
0.4289 -2.1400 -2.9454 -0.5539

Next, sum the entries in each column and divide by the number of rows, thus
obtaining the average value of each column. Let Mi denote the average of the ith
column. For the data above, we obtain the five numbers

Mi = 1.9141, M2 = 1.1820, M3 - 1.1883, M4 = -1.9755, M5 = -0.0767 .

Finally, the standard deviation of the Mh 

standard deviation =



is the number used to indicate ‘how much’ of period 5 is present in the data.
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Of course, a reasonable question at this point is: Why this number? Here’s
the rationale: Assume that the data is composed of sinusoidal components and
random noise. If there is a component of period 5, then each column will con­
tain the same phase of this component, as Figure 2a illustrates. Averaging the
column gives the correct amplitude of this component. But what of the other
components—periodicities other than 5, and noise? Since positive and nega­
tive deviations will tend to cancel each other, the averaging process will tend to
annul these other components. So, the numbers Mi through M5 should be, ap­
proximately, as shown in Figure 2b (which they are!), and the standard deviation
measures the spread of these values about their mean. Of course, the larger the
amplitude of the component, the larger the spread about the mean.

Figure 2a. Three components: period 5,
period 13, and noise. All ‘dotted’ points
will contribute to the same column in a
tabular test for period 5.

Figure 3 shows the results of this test for periods up to 20. Indeed, a peak
occurs at 5 (and multiples of 5). There is also a peak at 13, albeit less noticeable;
partly because the amplitude of the cosine component is only half that of the
sine component.
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2

Figure 3. The ‘period detector number’
versus period. Note the peaks at 5 (and
multiples of 5) and 13.

About the same time that this tabular method was being pursued, Stokes [Sto]
presented an integral approach to the problem. In 1879, he suggested that to
test a function /(x) for period 2s., one might do well to multiply by a sinusoid
with this period, sin nx, and then investigate the integral

y" /(x) sin nx dx .

For if /(x) has a component ylsinn'x, then this integral will involve (among other
things)

/.. . , . . , Xsinfn' — n)x ytsinfn' + nlxMsinn x) sinnxdx = ——-----—--------—;k ’ 2(n'-n) 2(n' + n)
the important observation is that if n' is close to n, then the sinusoid 4
has gm amplitude of large magnitude and a long period, and should be easily
detectable. For example, taking A = 1, n' = 0.65 and n = 0.60 yields the sine curve
of amplitude = 10 shown below.

The graph of the sinusoid

A sin(n' — n)x
2(n' - n)

when A = 1, n' = 0.65 and n = 0.60.

1897: Schuster’s Periodogram. In 1897, Schuster introduced the periodogram
as a tool for detecting hidden periodicities [Sch], and he used it to investigate me­
teorological phenomena. The method is computationally intensive, which made 
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it difficult to apply practically until the advent of the electronic digital computer
in 1946. A brief description and example follows.

Suppose there are N available data points (l,j/i),... Consider an approx­
imation to the data of the form

. 2irk .a0 + > , (a*  cos — t + bk sin — t) .
k=l

It is desired to choose the 2K + 1 coefficients ao.aj.fti,... ,aK,bx so that a least­
squares fit is obtained. Provided that N > 2K + 1, there is a unique solution to
this problem, found by taking

1 N

n=l

n=l

2 A 2irkn
bk = N^ynSin^~N~^ k = 1'-'-'K •

n=l

This is the discrete analogue of the (continuous) Fourier series, and is called the
‘discrete Fourier series corresponding to the data’ [S&H, 18-22]. Note that the
fundamental frequency is y; let />■ := denote the ith harmonic. The intensity
at frequency fi is defined by /(/<), where

KJ
Kfi) :=y(«? + 6,?).Li

This intensity is measuring how much of the frequency fi is present in the data.
The periodogram is the graph of Z(/,) versus

To illustrate, consider again the data of Figure 1. Figure 5a shows this data,
superimposed with its discrete Fourier series. Since N is 60 in this example,
K was taken to be 29, so that K is the largest integer satisfying 2 • K + 1 < 60.
Figure 5b shows the periodogram, which indeed peaks at both f = .2 and f « .08
(corresponding to periods 1/.2 = 5 and 1/.08 = 12.5).
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Figure 5a. A function having 2 sinusoidal
components and noise, superimposed with
its discrete Fourier series.
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1900s; Time Series Analysis. The area of time series analysis really emerged—
at least by this name—in the twentieth century. A time series is just an ordered
list of numerical observations; this ‘ordering’ is usually provided by time, and
hence the label. Up until about 1925, a time series was analyzed as if it was
deterministic, that is, a ‘generator’ (function of time) was sought that could
subsequently be used to ‘determine’ values of the series. If the predicted values
did not agree with the series values, blame was placed on an improper determi­
nation of the generator, or noise.

In 1927, an important new viewpoint emerged,, due primarily to work on sunspot
numbers by Udny Yule. He was struck by the ‘apparent’ periodicity of the data,
speckled by irregularities, and drew this analogy:

If we have a rigid pendulum swinging under gravity through
a small arc, its motion is well known to be harmonic,
that is to say, it can be represented by a sine or cosine
wave, and the amplitudes are constant, as are the peri­
ods of the swing. But if a small boy now pelts the pen­
dulum irregularly with peas the motion is disturbed. The
pendulum will swing, but with irregular amplitudes and
irregular intervals. The peas, in fact, instead of leading
to behaviour in which any difference between theory and
observation is attributable to an evanescent error, pro­
vide a series of shocks which are incorporated into the
future motion of the system [Ken, 4].

From this viewpoint was to come the notion of a stochastic process, an important
sub-area of time series analysis.

The probabilistic and statistical theory of time series was developed during the
1920s and 1930s, and the concept of spectrum was introduced [Bio, 6]. Roughly
speaking, spectrum analysis is used to mean methods that describe the tendency
for oscillations of a given frequency to appear in the data, rather than the oscil­
lations themselves [Bio, 2]; spectrum analysis combines the methods of Fourier
analysis and statistics. The increased availability of computers in the 1950s and
1960s to carry out the extensive computations involved in spectrum analysis con­
tributed to a wealth of developments in this decade: some important names are
Grenander And Rosenblatt [G&R, 537-558], Parzen [Par], and Blackman and
Tukey [B&T].

Signal Analysis. Parallel to the development of time series analysis is signal
analysis. An important sub-area of signal analysis is filter theory—a filter being
a device that transforms input in some specified way to yield a desired output
[Joh, 1-3]. Filter theory began in 1915 when G.A. Campbell in America and
Wagner in Germany independently invented the electric wave filter, a physical
device to pass signals in a certain frequency band and suppress signals in all 
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other bands. By providing different filters for different frequency ranges, more
than one telephone conversation can be carried out simultaneously on the same
lines [Mab, 31].

It is interesting to note that in early filter theory literature, the word ‘filter’
usually referred to the actual hardware—resistors, capacitors, inductors, and
such—providing the signal processing. It was not until the 1930s (and the advent
of so-called ‘modern filter theory’) that developments by Cauer, Darlington and
others led to the idea of a mathematical filter and its associated transfer function,
which describes precisely what the filter does. As an example, consider the five-
point moving average filter which takes five consecutive data points as input,
averages their"'auS'outputs the ave^f7;centered, as illustrated below.

ift. '__  ys y< . \ ye yr ya y9 yl0

AV. AV. -= AV.

By letting an denote the average of data values yn-2,yn-i,yn,yn+i,yn+2 this filter
can be described mathematically by

an := g ] yn-m • (t)
0 m=-2

The transfer function then describes what the filter does to each input frequency,
as follows: notation is simplified tremendously if we work with the complex
exponential

e,ut := coswt + isinwt

instead of real sines and cosines.

Suppose we ‘input’ a complex exponential of frequency w,

J/(n) := eiujn ,

into the moving average filter (f). Here, function notation y(n) has been used
instead of subscript notation yn, for convenience. The output obtained is

e«w(n-m)

le.Wn
2

e~iurn

m=—2

= leiwn(e2,'w + eiu + 1 + e~iu + e~2iu
5

_ le>'“n(2cos2w + 2cosw + 1) .
5
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The symmetry in the coefficients allowed use of the identity

2 cos / = e'‘ + e-,t

to simplify the expression. If one defines

H(w) := i(2 cos 2w + 2 cosw + 1) ,
5

then it is seen that whenever eiun is input to the filter, the corresponding output
is Zf(w)e'u"1. The critical observation is that the same function eiun emerges from
the filter, except multiplied by H(u).

In practice, it is usually more convenient to work with cyclic frequency f than
radian frequency w; these are related by u := 2irf. In terms of /, the transfer
function can be rewritten as

H(f) := /f(w) = ^(2cos4tt/ + 2cos2tt/+ 1) .
u

This transfer function H: f H(f) is shown in Figure 6a [Ham, 39]. Let’s reiterate
how it works: if a sinusoidal component S(/) of frequency f is processed with this
filter, the output will be H(f) ■ S(t). That is, the transfer function H allows one
to take an input frequency f and ‘transfer’ to the output simply by multiplying
by H(f). Observe that the transfer function of Figure 6a has a zero at f =
.2, corresponding to period 5. Of course—if 5 consecutive unit-spaced points
are averaged on a period 5 sinusoid, the result is zero! But if this filter acts
on a sinusoid of period 13 (/ = 1/13 « .08), this component should emerge at
approximately .7 times its original amplitude. To illustrate, this five-point moving
average filter was applied to the sample data considered twice earlier; recall it
has an amplitude 2 component of period 5, an amplitude 1 component of period
13, and some noise. The filter output is shown in Figure 6b. As expected, the
period 5 component has been entirely erased; all that remains is .7 times the
amplitude 1 component!
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Figure 6a. The transfer function for a five-point
moving average filter, H(f) versus frequency f.
Note that H(.2) = 0; a frequency .2 (period 5)
sinusoid is completely suppressed.

Figure 6b. The data of Figure la was fil­
tered with a 5-point moving average filter,
yielding this output. Observe that only
the period-13 component remains, at .7
times its original amplitude.
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Recent developments. Often, the characteristics of a signal vary with time;
for example, a ‘sinusoid’ may be present, but with period gradually increasing
from 5 to 7. A filter that tries to adapt to such changes is known as an adaptive
filter. That is, the performance of the filter suggests changes in its coefficients
[Ham, 277-278]. In 1960, R.E. Kalman introduced an algorithm since known as
the discrete Kalman filter which is the main tool for such problems. His paper,
titled A new approach to linear filtering and prediction problems, was published
in the Journal of Basic Engineering, and is considered by many to be one of the
most important results in its area in the last thirty years. From a mathematical
viewpoint, the Kalman filter theorem is a beautiful application of functional
analysis; for statistics students, an example of Bayesian statistics in action [Cat,
Preface & p. 137].

In 1965, Cooley and Tukey [C&T, 297-301] introduced an algorithm since known
as a fast Fourier transform. Coupled with the smaller, faster and less expensive
computers that appeared in the 1970s, many practical applications of spectrum
analysis on large data sets became possible. Techniques and methods that take
advantage of increased computing powers will undoubtedly continue to advance
the ‘search for hidden periodicities’.



CHAPTER 2

‘FITTING’ A DATA SET WITH A FUNCTION
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What is
‘random’
behavior?

2.1 Random Behavior

The Turning Point Test

What is random behavior? For the purposes of this disserta­
tion, a list is called random if the list entries are completely
non-deterministic; i.e., if the occurrence of any observation in
the list in no way influences the occurrence of any other ob­
servation. Should a list be random, then there is no sense in
searching for deterministic components.
This section presents a test for random behavior, called the
turning point test. The idea behind the test is this: if data is
truly random, then certain behavior dictated by randomness is
expected. A probabilistic comparison of properties of the actual
data with what is expected should the data be truly random is
used to support or deny the hypothesis of random behavior.
The turning point test is adapted from [Ken, 21-24]. Several
other tests for randomness are discussed in the same cited sec­
tion.
Some review of probability and statistics concepts is inter­
spersed throughout this section. The reader is referred to
[Dghty] for additional material. A MATLAB program to apply
the Turning Point Test is included in this section.

DEFINITION
neighbor;
peak;
trough;
turning point

Given an entry y,- in a list (... ,y,_i,yi,y,+i,...), the adjacent
entries y,_i and y,+1 are called the neighbors of y,-.
An entry in a list is called a peak if it is strictly greater than
each neighbor; and is called a trough if it is strictly less than
each neighbor.
A list entry is a turning point if it is either a peak or a trough.

TURNING
POINT
TEST

* X
X A X* X f

t 1

TROUGH PEAK

The turning point test is so named because it counts the num­
ber of turning points in a finite list of data, and compares
this number with what is expected, should the data be truly
random.
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hypothesis for
the turning
point test

For the turning point test that is developed in this section, it is
assumed that the entries in a finite list are allowed to come from
an interval of real numbers. Since there are an infinite number
of choices for any list entry, the probability that two entries in
the list are equal is zero. In particular, the probability that
there are equal adjacent entries is zero;

If a finite list contains a large number of duplicate values, then
the hypothesis that the list entries come from some interval is
probably unwarranted, and the turning point test as developed
here will not apply.

An event E is a subset of a sample space S. The probability of
E is determined by how much ‘room’ E takes up in S.
Suppose that two numbers are chosen from an interval I. The
corresponding sample space is Ixl. The phrase ‘the probability
that there are equal adjacent entries is zero’, means, precisely,
that the measure of the set {(x,i) | x G 1} (as a subset of I x Z)
is zero.

Suppose that three numbers are chosen from an interval I.
The corresponding sample space is I x I x I. The phrase ‘the
probability that there are equal adjacent entries is zero’, means,
precisely, that the set

S :={(x,x,y) | x,y G 1} U {(z,y, y) | x,y£l} ,

(as a subset of I x I x Z), has measure zero. The set S is the
intersection of two planes in R3 (x = y and y = z) with the cube
I x I x I; the resulting set is ‘thin’ in R3.
The hypothesis that the entries in a finite list come from an
interval justifies taking the sample space, in the following de­
velopment of the turning point test, to be all possible arrange­
ments of three distinct values. If, on the other hand, the en­
tries come from some finite set, then the probability that there
are equal adjacent entries is nonzero, and one would have to
enlarge the sample space to account for these possible repeat
values.
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probability of
finding a
turning point
in a set of
3 distinct values

Let I, m, and g be three distinct real numbers, with I < m < g.
The letters were chosen to remind the reader of this ordering:
I for ‘least’, m for ‘middle’, and g for ‘greatest’.

There are 3 • 2 • 1 = 6 ways that these three numbers can be
arranged in three slots. If the ordering is random, then these 6
possible arrangements will occur with equal probability. Only
four arrangements yield a turning point:

I m g no turning point
X

I g m p is a peak
X

m I g I is a trough v
X

m g I g is a peak *
X

g I m

g m I Xno turning point *
X

Thus, the probability of finding a turning point in a set of three
distinct real values is 4 = |.O o

S, sample space Let S denote the sample space containing all possible arrange­
ments of three distinct values, so that S contains the six 3-
tuples investigated above.

a ‘counting’
random variable,
C:S—►{(), 1}

Define a ‘counting’ random variable C: S —* {0,1} via

C(a,6,c) :=
if b is a turning point
otherwise .
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E(C) = nc = 1 The probability that b is a turning point is j. It follows that
the expected value of C, denoted by both E(C) and pc, is

2 1 9E(C) = Pc = (l)(0 + (O)(i) = ^ .

0 0 0

Here, E is the expected value operator.

E(C2) = j Define the function C2 by C2(a,6,c) := C(a,6,c) -C(a,6,c). Since
I2 = 1 and 02 = 0, it follows that

2 & _ f 1 if b is a turning point
\ 0 otherwise .

Therefore, E(C2) also equals |.

var(C) = | Let var(C) denote the variance of C. Using the definition of
variance, and the linearity of the expected value operator, one
computes

var(C):=E((C-pc)2) = E(C'2-2pcC + ^)
= E(C2) - 2McE(C) + E(ji2c) = £(C2) - 2(Mc)2 + (pc)2
= e(ci)-(W)2 = |-(|)! = |.

0 0 *7

count the number
of turning points
in a list,
Ci

Consider now a list y := (yi,... ,yn) of length n. It is desired to
count the number of turning points in this list. Since knowledge
of both neighbors is required to classify a turning point, the
first and last entries in a list cannot be turning points; so the
maximum possible number of turning points present is n - 2.
Using the list y, define C,-, for » = 2,... , n - 1, by

f 1 if yi is a turning point
| 0 otherwise

the Ci
do NOT form
a random sample

Each random variable Ci is distributed identically to the ran­
dom variable C. However, it is important to note that this
collection of random variables is not a random sample
corresponding to C, because C,- and Cj are not independent for
0 < |j - i| < 2; that is, when the 3-tuples acted on by C,- and Cj
overlap. This issue is addressed later on in this section.
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computing var(T)

T
gives the
total number
of turning points
in a list

Define a random variable T by

n—1

T=^C,-.
i=2

Then, T gives the total number of turning points in the list.

E(T) = pT
= l(n-2)

Via linearity of the expected value operator,

E(D = £1E(C,-) = |(n-2) :=W .
i=2 d

Next, var(T), the variance of the random variable T, is com­
puted.
Since

var(T) = E(T2) - (pT)2 ,

one first computes E(T2):

E(T2) = E (('^Ci)2\
\ i=2 /

= E((C1 -I----- 1- Cn-1)2) .

counting terms
of the form CiCj

r c* ic3

.Cn-i.

There are (n - 2)(n - 2) = n2 - 4n + 4 terms in the product
(C2 -I----- F Cn-1)2. It is necessary to count the number of terms
of the form C.Cj for j = i, |j - i| = 1, |j - i| = 2, and |j - i| > 2;
that is, when the indices on C are the same, or differ by exactly
1, exactly 2, or more than 2. This ‘counting’ is easily accom­
plished by performing the multiplication as a matrix product,
and analyzing the result:

The main diagonal has n-2 entries, each of the form C2. Thus,
there are n-2 terms of the form C2.
There are (n-2)-l = n- 3 entries on the first diagonal above
and below the main diagonal, and these are the terms for which
|j-i| = 1. Thus, there are 2(n - 3) terms of the form C,Ci+i.
There are (n-2)-2 = n-4 entries on the second diagonal above
and below the main diagonal, and these are the terms for which
|j - i| = 2. Thus, there are 2(n - 4) terms of the form C,C,+2.
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The remaining terms axe those for which |j - i| > 2; thus, there
are

(n2 - 4n + 4) - (n - 2) - 2(n - 3) - 2(n - 4) = n2 - 9n + 20
= (n-4)(n-5)

terms of the form C,Q for |j - i| > 2.

With a slight abuse of summation notation, the findings thus
far are summarized as:

E(.T2) = E(Q2Ci)2
\ i=2

E c,ci+1+ $2 c<ci+2 + E W
n-2 2(n—3) 2(n-4) (n-4)(n-5)

X b-l>2 /

In each sum, the index denotes the number of terms, and the
argument depicts the form of the terms being added. The
expectations of each term in (*)  must be considered separately.

investigating It has already been observed that E{Cf) = |, since C2 = C,-.
When |j - t| > 2, the random variables Ci and Cj have non­
overlapping domains. Under the assumption of randomly gen­
erated data, the occurrence or non-occurrence of a turning
point for C,- in no way influences the existence of a turning
point for Cj in this case; i.e., C,- and Cj are independent. Thus,

E^Cj^E^Cj)^-.-^^ for|j-:|>2.

E(C?) and
E(CiCj), |j —i|>2

However, for j < 2, the random variables Ci and Ci+j have
overlapping domains, and E(C,C,-+;-) / F(C,)F(C,+j); i.e., C, and
Ci+j are not independent for j < 2.

investigating
E(CiCi+1)
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The proof of this statement follows. To evaluate E(CiC,+i) re­
quires the investigation of existence of turning points in 4 con­
secutive slots. For convenience of notation, let four distinct
real numbers be labeled in order of increasing magnitude as a,
b, c and d. There are 4 • 3 • 2 • 1 = 24 ways that these four numbers
can be arranged in four slots, as shown below:

abed bacd cabd dabc
abdc badc cadb dacb
aebd bead chad dbac
aedb beda cbda dbea
adbc bdac edab dcab
adeb bdca edba deba

investigating
particular
arrangements

For the arrangement abed, Ci = 0 and Ci+i = 0. Thus, C.G+i = 0.

= 0

For the arrangement bacd, Ci = 1 (there is a trough). However,
C,+i = 0 (no turning point). Again, C,C,+i = 0.

TROUGH, x NO TURNING POINT,

For the arrangement badc, Ci = 1 (there is a trough), and C.+i = 1
(there is a peak). Thus, CiCi+i = (1)(1) = 1.

X
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investigating
^(C,-Ci+2)

Indeed, for the product random variable C,C,+i to be nonzero,
the arrangement of a, 6, c and d must display both a trough
and a peak. This occurs in 10 of the 24 possible arrangements,
and hence

Note that / j • |, confirming that O',- and C,+i are not inde­
pendent.

The random variables C,- and C,+2 again have overlapping do­
mains.

To evaluate £*((7;  C£4-i^reqnires the invvudgation of turning points 
in 5 consecutive slots. By methods similar to those just dis­
cussed, it can be shown that

combining Substitution of the computed expectations into (*)  gives
results

9 5 Q 4
^(T2) = z(n-2) + -.2(n-3) + -.2(n-4) + -(n-4)(n-5)o jlz zu y

 40n2 - 144n +131
90

var(T) Thus,

var(T) = £(T2) - (Mt)2
40n2 - 144n + 131

90
16n - 29

90

-(|(»-2))2

With both the mean and variance of the random variable T
now known, Chebyshev’s Inequality (stated next) can be used
to compare the actual number of turning points from a given
data set with the number that is expected under the hypothesis
of random behavior.
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CHEBYSHEV’S
INEQUALITY

using
Chebyshev’s
Inequality
to test for
random behavior

[Dghty, 121] If the random variable X has mean n and variance
a2, then, for any t > 0,

2

Equivalently,
2

p(|x-pI<Z)>i-S. .

This theorem states that for any random variable X with mean
p and variance a2, the probability that X takes on a value which
is at least distance t from the mean, is at most

Probability Density
Function for X;
shaded area is <

H-t p fj. + t

Observe that Chebyshev’s Inequality is a ‘distribution-free’ re­
sult; that is, it is independent of the form of the probability
density function for X. It is interesting to note that no ‘tighter’
bound on P(|X -p| > /) is possible, without additional informa­
tion about the actual distribution of X. That is, there exists a
random variable for which equality is obtained in Chebyshev’s
Inequality: P(|X — p| > t) = yr (see, e.g., [Dghty, 123-124]).

Here is how Chebyshev’s Inequality and the turning point test
are used to investigate the hypothesis that a given data set is
random.
Suppose that a finite list of data values is given, where it is
assumed that the entries in the list are allowed to come from
some interval of real numbers. As cautioned earlier, if there
are a large number of identical adjacent values in the data set,
then the hypothesis that the values come from some interval of
real numbers is probably unwarranted, and the turning point
test as developed here does not apply.
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adjusting
the list
for occasional
identical
adjacent values

For any occasional adjacent data values that are identical,
delete the repeated value, and decrease n (the length of the
list) by 1. For example, the data list

(1,3,5, 2,2,7,6,4,3,9,0,1,5,8)

of length 14 would be transformed to the list

(1,3,5,2,7,6,4,3,9,0,1,5,8)

of length 13, before applying the turning point test.
Let N denote the length of the (possibly adjusted) data set.

Tact,

the actual number
of turning points

Let denote the actual number of turning points in the (ad­
justed) list. Under the hypothesis of random behavior, the
expected value and variance of the random variable T that
counts the number of turning points in the list are given by

2
E(T) = -(2V-2):=p , and

162V - 29 2
V“<r’ = —90— := " '

Let d := |Tact - p| denote the distance between the actual and
expected number of turning points. By Chebyshev’s Inequality,
the probability that the distance of d or greater between p and
T would be observed, should the data be truly random, is

2
P(|T-/x|>d)<^.

Probability Density
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If £ is close to 0, then it is unlikely that turning points
would be observed if the data were truly random. In this case,
the hypothesis that the data is random would be rejected, and
the search for deterministic components could begin.
If £ is close to 1, then there is no reason to reject the hypothesis
of random behavior. In this case, it may be fruitless to search
for deterministic components.

EXAMPLE 1
applying the
turning point test

The data graphed below give the biweekly stock price of a
mutual fund over a two-year time period.

There are no identical adjacent values. The total number of
data points is N = 61.
The expected number of turning points, under the hypothesis
of random behavior, is

2
H = f (jV - 2) « 39.33 .

o

The actual number of turning points is

= 28 ,

so that the distance between the actual and expected values is

d-.= |39.33 — 28| = 11.33 .

The variance of T is

10.52 .2  167V —29  16(61)-29
90 90
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‘local’
random behavior

EXAMPLE 2

Chebyshev’s Inequality yields:

P(|T-p|> 11.33) < « 0.08.

Thus, it is quite unlikely that only 28 turning points would be
observed, if the data were truly random. The hypothesis of
random behavior is therefore rejected, and a search for deter­
ministic components can begin.

Some data sets, as in the next example, are ‘locally’ ran­
dom, and yet exhibit some deterministic behavior from a more
‘global’ point of view. In such instances, short-term data pre­
diction may be unwarranted, whereas longer-term prediction
may be possible. For sufficiently large data sets, the turning
point test can be used to help determine the ‘breadth of local
random behavior’. This idea is explored in the next example.

The data list graphed below was generated within MATLAB by
first producing some pure data, via the MATLAB commands
i = [1:100];
y = i/6;
and then introducing noise by use of the MATLAB command
rand(A).

MATLAB
COMMAND
rand(A)

The MATLAB command rand(A) produces a matrix the same
size as A, with random entries. By default, the random numbers
are uniformly distributed in the interval (0,1). Then,
2*(rand(A)  - .5)
gives numbers uniformly distributed in (-1,1).
The command rand (’normal’) can be used to switch to a nor­
mal distribution with mean 0 and variance 1. The command
rand (’uniform’) then switches back to the uniform distribution.

The list noisey graphed below was generated by the MATLAB
command
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applying the
turning point test
to noisey

EXAMPLE 2,
continued

The list noisey has 63 turning points, so T^t = 63.
The list noisey has length 100, so N = 100, and thus n = j(100) «
66.67 and a2 = 16(109°)--^ « i7.46.
Then, d = |66.67 - 63| = 3.67.

Chebyshev’s Inequality yields:

P(|r-p| > 3.67) 1-3.(3.67)2

Even though the data clearly illustrate a linear ‘trend’, there is
no reason, based on this test, to reject the hypothesis of random
behavior. Here is what the turning point test is revealing in
this situation: in moving through the list entry-by-entry, the
numbers rise and fall in such a way that they could certainly
have been produced by an entirely random process. Indeed,
since the slope of the ‘pure’ line is |, and the noise is ±1, it
could take more than 6 data entries before any increase due to
the linear trend is observed. Prediction of one data value into
the future is unwarranted.

However, if one were to move through the list by talcing, say,
every fourth entry, then the ‘local’ random behavior may be
overshadowed by the ‘global’ linear trend. This idea is investi­
gated in a second, slightly different, application of the turning
point test.

Generate a new list from noisey, by taking every fourth piece
of data. Call the new list noisey4. This is accomplished via the
MATLAB command 
noisey4 = noisey(l:4:100);
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Whereas the time list corresponding to noisey has spacing T =
1, the time list corresponding to noisey4 has spacing T = 4. The
new list noisey4 is graphed below, and has length N — 25.

20

10

40 60

X X x
X X *

x X
X X X x

X X
X^xx

x X
XX

X v X
X .

20 80 100

The list noisey4 has 10 turning points, so Tact = 10.
The list noisey4 has length 25, so N = 25, and thus p. = |(25) «
16.67 and a2 = --(295>~29 « 4.12.
Then, d= |16.67 — 10| = 6.67.

Chebyshev’s Inequality yields:

4 12P(|r-^|>6.67)<^«.09.

The hypothesis of random behavior is rejected for noisey4.
Thus, predicting future values of the list noisey4, based on
identified components, may be warranted. In other words, pre­
diction of 4 or more days into the future for the original list
noisey may be warranted.
In this example, the data clearly exhibit a linear trend. A
method of ‘fitting’ data with a function of a specific form is
discussed in Section 2.2.

In general, it is possible, with sufficient data, to continually
produce sublists, xk, of a list x, by taking every fcth entry from
x. If the turning point test, when applied to xk, concludes that
the hypothesis of random behavior is rejected, then prediction
of k or more units into the future for the original list x may be
warranted.
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MATLAB
FUNCTION
Turning Point
Test

The following MATLAB function is used by typing
y = tptest(x)
where:
x is the INPUT row or column vector;
y is the program OUTPUT.
The output matrix y consists of rows, where each row is of the
form: [length nofdup mu k TP P]
The variable length is the length of the list produced by taking
every kth entry from x, and adjusting the resulting sublist to
account for adjacent identical values. The number of duplicates
found in the list is recorded in nofdup.
The variable mu is the expected number of turning points, if
the behavior is truly random.
The variable TP is the actual number of turning points.
The variable P is from Chebyshev’s Inequality,

cr2P(|T-p|>d)<^.

The test is repeatedly applied to sublists, until either the list
is depleted, or until P < 0.1.

C 1;1;
x; */,  ex is a copy of x

M,
== cx(j+l)
= [ 1;

function T = tptest(x)
P = 1;
T :
k ;
ex
M = length(x);
while ((P >= 0.1) 4 (H > 3))
Ndup = 0;
j = i;while j <

if cx(j)
cx(j)
j = j-i;M = M-l;
Ndup = Ndup+1;

end
j=j+i;end

mu = (2/3)*M;
sigma = (16*M  - 29)/(90);
TP = 0;
for i = 2:M-l,

if [(cx(i-l)>cx(i))4(cx(i+l)>cx(i))]
TP = TP + 1;

end
end
d = abs(TP - mu);
P = sigma/(d."2);
T = [T; M Ndup mu k TP P];
k = k+1;
ex = x(l:k:length(x));
M = length(cx);
end

[(cx(i-l)<cx(i))4(cx(i+l)<cx(i))J,
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The following diary of an actual MATLAB session shows the
application of this Turning Point Test to the list noisey in Ex­
ample 2.

i = [1:100];
y = i/6;
noisey = y + 2*(rand(y)  - .5);
z = tptest(noisey)

z =

100.0000 0 66.6667 1.0000 63.0000 1.2983
50.0000 0 33.3333 2.0000 25.0000 0.1234
34.0000 0 22.6667 3.0000 16.0000 0.1288
25.0000 0 16.6667 4.0000 10.0000 0.0928

LENGTH nofdup mu k TP P
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Economics Application: Taking Advantage of Turning Points
Introduction If the hypothesis of random behavior is not rejected for given

data, then it may be fruitless to seek deterministic compo­
nents. However, the economics application discussed in this
section shows how one can, even in this situation, often take
advantage of the turning points (rises and falls) in stock market
data. The strategy is due to Eliason [Eli]. First, the underlying
mathematical theory is presented. Then, an example illustrat­
ing the application of this theory to stock market trading is
given.

preliminary
notation

Let x(0) be a given finite list of real numbers. Let x(n) de­
note the list present at the completion of step n (n > 1) in the
Martingale Algorithm (below), where x(0) is the initial input.
Let A: {1,2,3,...}—* {W, L] be a given function; for n > 1, either
A(n) = W or A(n) = L.
Let P and B be functions,

P: {0,1,2,3,...}-R , B: {0,1,2,3,...}-+R ;

the values assigned to P(n) and B(n) (for n > 0) are determined
by the Martingale Algorithm.

MARTINGALE
ALGORITHM

THE MARTINGALE ALGORITHM:

Initialization,
n = 0

INITIALIZATION (n = 0): Define P(0) = 0. If x(0) has two
or more entries, then let 5(0) be the sum of the first and last
entries in x(0). If x(0) has only one entry, x, then let 5(0) = x.

STEP n;n>l
A(n) = W;
find P(n)
and x(n)

STEP n, for n > 1:
If A(n) = W, then let P(n) = P(n — 1) + 5(n - 1). In this case,
adjust the list x(n -1) to get the list x(n), as follows:
• If x(n - 1) has more than two entries, then delete the first

and last entries to obtain x(n).
• If x(n — 1) has only one or two entries, then delete these

entries, and STOP the algorithm.
A(n) = L;
find P(n)
and x(n)

If A(n) = L, then let P(n) = P(n—1) — B(n—1). In this case, adjust
the list x(n-1) to get the list x(n), by appending 5(n-1) to the
end of x(n - 1).

find B(n) FIND 5(n): If x(n) has two or more entries, then let 5(n) be
the sum of the first and last entries in x(n). If x(n) has only
one entry, x, then let 5(n) = x. Go to the next value of n.
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the letters
A, P, and B,
W and L

EXAMPLE 1
applying the
Martingale
Algorithm

The variable names used in the Martingale Algorithm are sug­
gestive of common roles that these variables play in applica­
tions of the algorithm. The function A is the ‘Action’ function;
W denotes a ‘Win’ and L denotes a ‘Loss’. The function P
is the ‘Profit’ function, and B is the ‘Bet’ function. When a
WIN occurs, the profit is increased by the previous bet; when
a LOSS occurs, the profit is decreased by the previous bet.

Let x = (1,2,3,5), and let A(n) = (L, W, W, L, W,...). The table
below summarizes the algorithm:

n A(n) P(n) x(n) B(n)

0 — 0 12 3 5 6
1 L 0 - 6 = -6 1 2 3 5 6 7
2 W -6 + 7 = 1 2 3 5 7
3 W 1 + 7 = 8 3 3
4 L 8-3 = 5 3 3 6
5 W 5 + 6 = 11 STOP —

Observe that the algorithm STOPPED at N = 5, and P(5) =
11 = 1 + 2 + 3 +5; that is, when the algorithm stopped, the value
of P is the sum of the digits in the initial list.

EXAMPLE 2
applying the

Suppose that a different action function is used:

Martingale
Algorithm
with a different The

A(n) = (L,L,L

algorithm is summarized

,W,L,W,W,...) .

in the table below:
action list

n A(n) P(n) x(n) B(n)

0 — 0 12 3 5 6
1 L 0 - 6 = -6 1 2 3 5 6 7
2 L -6 - 7 = -13 123567 8
3 L -13 - 8 = -21 1235678 9
4 W -21 + 9 = -12 2 3 5 6 7 9
5 L -12 - 9 = -21 235679 11
6 W -21 + 11 = -10 3 5 6 7 10
7 W -10 + 10 = 0 5 6 11
8 L 0 - 11 = -11 5 6 11 16
9 W -11 + 16 = 5 6 6
10 W 5 + 6 = 11 STOP —
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This time, the algorithm stopped at N = 10, but again P(N) =
11. The next theorem shows that this behavior is no coinci­
dence:

THEOREM
the series number
associated with x

Let x(0) = (ii,... , xm) be a finite list of real numbers, with m > 1.
Let Af := £14---- f-£m be the sum of the entries in x(0). If a STOP
occurs in the Martingale Algorithm at step N, where x(0) has
been used as the initial input, then P(N') = M. The number M
is called the series number associated with the list x(0).

PROOF
definition of
T(n), the
induction
statement

The proof is by induction.
For n > 1, let T(n) be the statement,

lIf the algorithm stops at step n, then P(n) — M\

a series A series of W’s in the corresponding action list is the quickest
ofW’s way to stop the algorithm. First, action lists containing only
,s J W's are considered. Then, the induction step is applied toquickest way . .
to STOP action lists that contain at least one L.

x(0) has one
or two entries;
T(l) is true

If x(0) has only one entry, x(0) = (x), then T(l) is true (see
below).

(x)

STOP;
P(l) = x

(a:,x)

CSTOP;
P(l) = x + y

(a;,i/,x4-y)

If x(0) has two entries, x(0) = (x, y), then T(l) is true (see above).

x(0) has If x(0) has three entries, x(0) = (x, y, z), then it takes at least two
three entries steps to STOP the algorithm. In this case, T(l) is vacuously

true, and T(2) is true (see below).

G/); P(l) = * + *

(x, y, z, X + z)

STOP; P(2) = (x + z) + y

NOT A STOP

NOT A STOP

NOT A STOP



x(0) has
m entries,
m is odd

Now suppose x(0) has m entries, x(0) = (i!.......xm), where m > 4.
If m is odd, then let m = 2j - 1 for j > 3. A series of PV’s
produces a STOP in j steps, and T(j) is true. For 1 < k < j,
T(k) is vacuously true. Only the W’s are shown in the flow
chart below.

n — 0 | n = 1 I \ n = j — 1
I I I
I 1.1

(Xl,. . . j--- -  \x2t • • ixm—1) | * j \xj)
| P(l) = Xi + Xm | I

jW STOP;
I P(» = M
I
I

x(0) has
m entries,
m is even

If m is even, then let m = 2j for j > 2. A series of W's produces
a STOP in j steps, and T(j) is true. For 1 < k < j, T(k) is
vacuously true.

the action list
has at least one
L

Suppose now that the action list has at least one L. Suppose
that T(k) is true for all fc = 1,... ,7V - 1, and consider the state­
ment T(N).
To motivate what follows, consider a typical flow chart that
summarizes all possible actions on a list:

n = 0 I
I
I
I

STOP*
I

n = 3 1
f
1

n = 4

I
1

STOP
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important
observations

The following observations are important:
• Every STOP at step N comes from a W in step N. Also,

in these cases, x(N -1) has either 1 or 2 entries.
• Tracing back from a W, there is a first L, say in step N-k,

for 1 < k < N - 1.
• Taking only W's from step N-k leads to a STOP that

is earlier than step N. The inductive hypothesis will be
applied to this earlier STOP, to show that T(N') is true.

suppose a STOP Now, the induction argument. Suppose that a STOP occurs in
occurs at step N,
x(N — 1) has only
one entry

step N, and suppose that x(N - 1) has one entry.
The flow chart below is useful in summarizing the results:

notation:
P(n) and x(n),
P'(n) and x'(n)

For ease of notation in what follows, the profit functions and
lists are denoted by P(n) and x(n), respectively, along the lower
series of W’s, and are denoted by P'(n) and x'(n) around the
TURN and along the upper series of W’s. 
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lower series • Let x(N - 1) = (x). Since PIN) = P(N - 1) + x, it follows that
ofW’s P(N - 1) = P(N) - x.

• Then, x(N-2) = (xnx,x2) for real numbers xj. and x2. Since

P(N - 1) = P(N - 2) + (xi + x2) ,

it follows that

P(N - 2) = P(N - 1) - (xi + x2)
= P(N) - (x + xj + x2) .

• Then, x(N - 3) = (x3) xi, x, x2, x4) for real numbers x3 and x4.
Since

P(N - 2) = P(N - 3) + (x3 + x4) ,

it follows that

PIN - 3) = PIN - 2) - (x3 + x4)
= PIN) - (x + xj 4- x2 + x3 + x4) .

• Continuing in this fashion, one has, in step N - k, for 2 <
k< N-l,

x(N — k) = (x2t_3,x2fc_5,... ,xi,x,x2l... ,x2fc_41x2t_2) , and
PIN -k) = PIN) - (x + n + x2 4----- 1- x2fc_3 4- x2*_ 2) .

the TURN Taking the first L that occurs in step N — k, one has:

x'IN - k - 1) = (x2t_3,... , x1( x, x2,... , x2fc_4) ,

where x2t_2 must equal x2t_3 4- x2£_4, since the first and last
entries of x'IN-k-1) are summed and appended to x'IN-k-1)
to produce x(7V - k).
Since

PIN - k) = P'IN -k-1)- lx2k_3 4- x2t_4) ,

it follows that

P'(jV  k - 1) = PIN - k) 4- (x2fc_3 4- x2fc_4)

= PIN) — (x 4- xi 4- x2 4----- bx2fc_34- X2k^2 ) 4-(x2fc_3 4-x2t-4)
= PIN) - (x 4- xi 4- x2 4- • • • 4- x2Jfc_3) .
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upper series
ofW’s

Note that x'(N-k-l') hets 2k-2 = 2(fc-l) entries. Each successive
W will delete two of these entries, so a STOP will occur in k -1
steps, that is, in step (N - k - 1) + (fc - 1) = N - 2.
Since P'(N - k) = P'(N - k - 1) + (r2t-3 + ®2t-4), it follows that

P'(N — k) = P(N) — (x + Xi + X2 d----- 1- I2fc-6 + X2t—5) •

Continuing in this fashion, the remaining k-2 W’s will produce
a STOP in step N - 2, with

P\N - 2) = P(N} .

By the inductive hypothesis, P'(N — 2) = M, thus proving that
P(N) = M.

the case where
x(N — 1) has
two entries

In the case where x(N - 1) has two entries, the preceding argu­
ment goes through, mutatis mutandis, to show that P\N -1) =
P(7Vj; and, by the inductive hypothesis, P'(N-l) equals M, thus
proving that P(N) = M.

combining
results

Combining results, it has been proven that if a STOP occurs
in step AT, then P(N) = M, thereby showing that T(N) is true,
and completing the proof. |

Next, the application of this theory to stock market data is
given.

ECONOMICS
ALGORITHM
choose x,
with
series number
M > 0

Let x(0) = (xi,... ,xm) be a list of positive integers to be input
into the Martingale Algorithm, with m > 1. Then, the series
number M = ii -1----- F xm is positive.
Let B and P be the functions described in the Martingale Al­
gorithm. Since each list x(n) in the Martingale Algorithm will
have positive entries (since x(0) does), it follows that B(n) will
be positive, for all n.
Note that B(0) = xi d- xm, and P(0) = 0.
It may be helpful to study Examples 3 and 4 as you read
through this algorithm.

y(/) gives the
stock price
at time t

Let to be some starting time, and let y(t0) be the price of a
selected stock at time t0. In general, y(t) will denote the price
of the stock for t > t0. The units of y(t) will typically be dollars.
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shares are
purchased in
multiples of a
positive integer S

Let S (for ‘Shares’) be a positive integer. Shares of stock will
be purchased in multiples of S. Since broker’s fees are usually
much smellier when shares are purchased in multiples of 100, S
is typically a multiple of 100.

initial purchase:
B(0) • S

To begin the algorithm, the trader purchases B(0) • S shares
of stock, at price y(t0). The algorithm discussed below will
determine future buys and sells of stock.

the
Point Spread,
PS,
determines when
action is taken

Let PS (for ‘Point Spread’) be a fixed positive real number,
that will determine when Action (buying or selling of stocks)
is to take place, as described next. The units of PS are the
same as the units of y(f).

step 1 Define y(0) := y(t0). Let ti > t0 be a time for which |y(*i)-j/(O)|  >
PS; that is, ti is a time at which the price of stock has deviated
from the beginning price by PS or more.
Ideally, (to speed the algorithm to its completion), h will be
the first time (after f0) that the stock price changes by PS or
more.
De^ne f y(°) + PS if l/Gi) > 1/(0)

’ t 2/(0) - PS if y^) < y(0) .

Then, y(l) gives the ‘ideal’ trading price at step 1; but a broker
may not be able to buy/sell at this ‘ideal’ price y(l). The value
y(ti) gives the actual stock price at the time of transaction.

PS PS
1—------- 1 y(#i)?

y£i) £(o) y(i)

step n, for
n > 1

The procedure followed in step 1 is now repeated for steps
2,3,4,....
Let tn > tn_i be a time for which |t/(t„) - y(n - 1)| > PS. Define

~l) + PS if y(tn) > y(n - 1)
M'[y(n-l)-PS if y(t„)<y(n-l) .

Then, y(n) gives the ‘ideal’ trading price at step n. The value
y(in) give the actual stock price at the time of transaction.
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trader’s strategy
is assumed to be
‘buying long’

sgn(n) keeps
track of
wins and losses

adjust the
list x(n — 1)

TS(n) := B(n) • 5
gives the number
of shares the
trader must own
at the completion
of step n

SH(n)

For the Economics Algorithm discussed here, it is assumed that
the trader is buying long', that is, buying low, with the hopes of
selling high. In this case, a rise in stock price is favorable, and
is considered to be a WIN; a fall in stock price is unfavorable,
and is considered to be a LOSS.
The changes in stock prices (of PS or more) will determine the
ACTION function A, as follows: a W (for WIN) is recorded
if the stock price increases, and a L (for LOSS) is recorded
otherwise.

For example, suppose that |j/(in) - j/(n - 1)| > PS, and y(tn) >
y(n — 1). Then, the price of stock has risen (from the previous
‘ideal’) by PS or more, and one sets yl(n) = W.

PS y(/n)
------- 1—

t/(n-l) y(n)

If |y(*n)  - y(n - 1)1 > PS, and j/(in) < y(n - 1), then the price of
stock has fallen (from the previous ‘ideal’) by PS or more, and
one sets A(n) = L.

Define
sgn(n) := 1

-1
if A(n) = W
if A(n) = L .

Based on A(n), the list x(n-l) is adjusted, and the number B(n)
is computed, as per the Martingale Algorithm.

The number B(n) • S gives the number of shares of stock that
the trader must own at the completion of step n. This total
number of shares is denoted by TS(n) in the following table.

In order to own TS(n) shares, an appropriate number of shares
is bought or sold (whichever is appropriate) at price y(tn). The
number of shares that must be bought or sold at step n is
denoted by SH(n) in the following table. If SH(n) is positive,
then shares are purchased; if SH(n) is negative, then shares are
sold.
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ACT(n) The account value at the completion of step n is denoted by
ACT(n) in the following table. If the trader is in debt at the
completion of step n, then ACT(n) is negative. Otherwise,
ACT(n) > 0.
Notice that if SH(n) is positive, then SH(n) shares are purchased
at (positive) price y(tn), and ACT(n) = ACT(n - 1) - y(tn)SH(n).
On the other hand, if SH(n) is negative, then -SP(n) is posi­
tive, and -SH(n) shares are sold at (positive) price y(/n), and
ACT(n) = ACT(n - 1) + y(in)(-SP(n)).
In both cases,

ACT(n) = ACT(n - 1) - y(*„)SH(n)  .

stopping the
algorithm

The algorithm STOPS when the list x(n) is depleted. At this
step, B(n) = 0, and all shares of stock currently owned are sold.

symbolic table The table below summarizes the algorithm symbolically. All
the symbols used in this table have been discussed in the pre­
vious paragraphs.

n y(tn) y(n) 4(n) sgn(n) P(n) x(n) B(n) TS(n) SH(n) 4CT(n)

0 y(M y(0) - - 0 X B(0) B(0)S B(0)S -B(0)SyM
1 M y(l) A(l) sgn(l) B(0)sgn(l) x(l) B(l) B(l)5 (B(l) — B(0))S ACTW-yMSHll)
2 y(h) v(2) A(2) sgn(2) P(l)+B(l)sgn(2) x(2) S(2) S(2)5 (B(2)-B(1))S ACT(V) - y(tj)SH(2)

EXAMPLE 3 The next table illustrates the algorithm in the case where x(0) =
(1,2,3,4,5,6), the trader is buying long, the rise and fall of stock
prices is such that A(n) = (£, L, W, W, W, L, W, W), PS = $1, S = 100,
and transactions are made at the ‘ideal’ trading prices.
Observe that the series number for x(0) is 21, and the account
value at the completion of the algorithm is

$2100 = (PS) • (S) • (series number) .

The theorem following Example 4 proves that this is no coin­
cidence.
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n y(‘n) St”) X(n) Sgn(n) x(n) S(n) TS(n) SH(n) ACT(n)

0 9 9 _ _ (1,2,3,4,5,6) 7 700 700 -700(9) = -6300
1 8 8 L -1 (1,2,3,4,5,6,7) 8 800 100 -6300 - 100(8) = -7100

2 7 7 L -1 (1,2,3,4,5,6,7,8) 9 900 100 -7100 - 100(7) = -7800

3 8 8 W 1 (2,3,4,5,6,7) 9 900 0 -7800
4 9 9 W 1 (3,4,5,6) 9 900 0 -7800
5 10 10 W 1 (4,5) 9 900 0 -7800

6 9 9 L -1 (4,5,9) 13 1300 400 -7800 - 400(9) = -11400
7 10 10 W 1 (5) 5 500 -800 -11400 + 800(10) = -3400

8 11 11 W 1 STOP 0 0 -500 -3400 + 500(11) = 2100

EXAMPLE 4 The next two tables illustrate that when the actual prices y(t.)
deviate from the ‘ideal’ prices y(i), the end profit may be either
higher or lower than the ‘ideal’ profit.
The initial list x(0) = (1,2,2,1) is used, PS = $1, and S = 100.
Thus, the ‘ideal’ profit is $600.

n S/(«n) y(n) A(n) sgn(n) x(n) S(n) TS(n) SH(n) ACT(n)

0 9 9 - - (1,2,2,1) 2 200 200 -200(9) = -1800
1 10.1 10 w 1 (2,2) 4 400 200 -1800 - 200(10.1) = -3820
2 11 11 w 1 STOP 0 0 -400 -3820 + 400(11) = 580

n !/('n) $(") X(n) sgn(n) x(n) B(n) TS(n) SH(n) ACT(n)

0 9 9 — — (1,2,2,1) 2 200 200 -200(9) = -1800
1 10 10 w 1 (2,2) 4 400 200 -1800 - 200(10) = -3800
2 11.1 11 w 1 STOP 0 0 -400 -3800 + 400(11.1) = 640

THEOREM Let x(0) = (zi,... ,im) be a list of positive integers to be in­
put to the Martingale Algorithm, with m > 1, and with series
number M. Let PS be a positive real number, and let S be a
positive integer. Let all other notation be as described in the
Economics and Martingale Algorithms. Suppose that all trans­
actions axe made at the ideal prices y(n). If a STOP occurs in
the Economics Algorithm at step N, then

ACTIN') = (S) • (PS) • (Af) .
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PROOF

practical
considerations

Suppose that a STOP occurs at step N. Then, by the Martin­
gale Algorithm Theorem, P(N) = M. The following expression
for P(N) is obtained:

M = P(N) = P(N - 1) + B(N - l)sgn(AT)
= P(N - 2) + B(N - 2)sgn(W - 1) + B(N - l)sgn(AT)

= P(0) + 5(0)sgn(l) + • • • + B(N - l)sgn(N)
= 5(0)sgn(l) + ■ • • + B(N - l)sgn(lV) .

Observe also that, under the stated hypotheses,

y(ti) ~ J/Gi-i) = sgn(i)|j/(i.) - j/(i,-i)|
= sgn(i)(PS) .

Observe that
55(0 = 5(5(0-5(4-1)) •

Now, compute ACT(N):

ACT(N) = ACT(N - 1) - SH(N)
= ACT(N - 2) - SH(N - 1) - y(tN) SH(N)

= ACT(O) - (y(^)SH(N) + ■■■ + y(ti)SH().)]
= -5(0) S j/(t0) - [j/(* n) 5(5(5) - B(N - 1))

+ • • • + y(i2) S(5(2) - 5(1)) + y^) S(B(\) - 5(0))]
= S[5(0)(y(ii) - !/(<o)) + • • • + B(N - l)(y(^) - !/(^-x))]
= 5[5(0)sgn(l)(P5) + • • • + B(N - l)sgn(AT)(PS)]
= S ■ PS[B(0) sgn(l) + • • • + B(N - 1) sgn(W)]
= (S)(PS)(M). |

The following observations axe important:

• Typically, a trader will set two orders with a broker: one
action, should a W occur, and another action, should a L
occur. When the stock price changes by PS or greater, one
order is filled, and the other order is cancelled.
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probabilities
of STOPPING
the Martingale
Algorithm

• The algorithm need not ever STOP. For example, the ac­
tion list (L,L,L,L,...) will cause the list x(i) to continually
grow in length.
A MATLAB program for computing the probability that
the algorithm STOPS in less than or equal to N steps is
included at the end of this section.

• Even if a STOP does occur, the broker’s fees for transac­
tions may ‘overpower’ the final profit.

• The account value ACT(i) can get extremely negative, be­
fore reaching the final profit.

• Different values of PS can affect the algorithm dramati­
cally. A proper determination of PS, based on historical
data, is important: many values of PS should be ‘tested’,
and an optimal value chosen.

The reader interested in predictability of stock market prices
is referred to [G&M] and [Rosen].

Let N and m be positive integers. Suppose that the Martingale
Algorithm is started with a list of length m. Suppose that, at
every step, there is equal probability that a W and L will occur
in the action list; that is,

probability(W) = probability(L) = 0.5 .

In order to determine the probability that the Martingale Algo­
rithm STOPS in at most N steps, it is convenient to summarize
the flow chart of all possible actions in a diagram such as the
one shown below (where m = 1):

FLOW CHART of all possible action lists
numbers indicate length of x(n)

n = 0 n = l n=2 n=3 n—4 n = 5

11012037 0 12
# of STOPS at step n
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nodes;
weights

analysis of
the SUMMARY
diagram

analysis of
the node (5,3)

Each point (n, length of x(n)) in the SUMMARY diagram is
called a node.
The numbers on the line segments between nodes in the SUM­
MARY diagram are called the weights.

Look at the SUMMARY diagram for m = 1. At step 0, the list
x(0) has length 1, indicated by the node (0,1). A W in step 1
results in a STOP, indicated by the node (1,0). A L in step 1
results in a new list x(l) of length 2, indicated by the node (1,2).

The weights give the number of paths that emanate from the
previous node. For example, consider the node (5,3) in the
SUMMARY diagram. There are two paths in the flow chart
that result in a list of length 3 at step 5 ending with a Lt
(L,L,W,L,L) and (L,L,L,W,L). These two paths are indicated
by the weight 2 on the lower line segment leading into the node
(5,3).
There is only one path in the flow chart that results in a list
of length 3 at step 5 ending with a W: (L,L,L,L, W). This path
is indicated by the weight 1 on the upper line segment leading
into the node (5,3).
Observe that each line segment leaving the node (5,3) has weight
2 + 1 = 3.

STOPS in The nodes of the form (n,0) correspond to STOPS in the algo-
the algorithm;
nodes of form
(n,0)

rithm. The number of STOPS at step n is summarized along
the bottom of the diagram, and is either zero, or equals the
weight of the line segment leading into the node.

Two more SUMMARY diagrams are given below. The left
diagram corresponds to starting length m = 2, and the right
diagram corresponds to starting length m = 4.

10 1 2d 3 7 0 12 18
# of STOPS at step n

0102509 23 0 43

# of STOPS at step n
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The SUMMARY diagrams produced in this manner lend them­
selves nicely to an algorithm for computing the desired stop­
ping probabilities, as follows. There are ‘upward diagonals’ in
each SUMMARY diagram (that is, the lines that have slope 1).
The weights on each of these diagonals can be associated with a
list: the topmost diagonal corresponds to the list (1,1,1,1,1,...)
(for any m). The next diagonal down corresponds to the list
(1,2,3,4,5,...) (for any m). These lists are arranged in ma­
trix form; every list (except the first) is prefaced with a 0 and
started in the appropriate column, as illustrated below for the
case m = 4:

111111 1
0 1 2 3 4 5 6

0 2 5 9 14
0 9

Let M(i, j) denote the entry (or blank) in row i and column j of
the arrangement above. For example, Af(2,3) = 2 and Af(3,6) =
9. There is no entry in M(3,1).

The following observations regarding this arrangement of the
diagonal lists are important: 
• Computation of the probability that the algorithm stops

in at most N steps requires N columns.
• The starting positions of rows 2,3,... will depend on the

starting length m.
• Once proper starting positions of the rows are computed,

the remaining list entries are easily determined as indicated
in the example below:

• The number of STOPS at each step is determined by the
lowest entry in each column.

111111 1
0 1 2 3 4 5 6

0 2 5 9 14
0 9
4- 4

0 1 0 2 5 0 9
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computing a
sample probability

A sample probability is now computed. Let m = 4, and suppose
it is desired to find the probability that the algorithm stops in
at most 5 steps; denote this by Prob(7V < 5). Let Prob(/V = i)
denote the probability that the algorithm stops in step i (for
i > 1). Then,

Prob(JV < 5) = J2Prob(y = i)
t=i

5
= ^(# of STOPS in step i) (probability of each STOP)

= (0)(i> + (1)(|)! + (0)( I)3 + (2)(|)4 + (5)(l)s
Z L L A &

« 0.5313 .

Thus, there is a 53% chance that the algorithm will stop in at
most 5 steps, when beginning with a list of length 4.

The following MATLAB function utilizes the previous obser­
vations to compute the desired probabilities.
The reader should store this program in an m-file named prstop.m.
Then, typing
p = prstop(m,H)
from within MATLAB returns a number p, where p is the prob­
ability that the Martingale Algorithm stops in less than or
equal to M steps, starting with a list of length m, and assuming
that, at each step, Prob(lV) — Prob(Z) = 0.5.
The table following the program lists the probabilities

prstop(m.I) , m = 1,... ,20 , 1 = 1,... ,20 .

The entry in row m and column I is prstop(m.M).

% copyright 1993 by Carol J.V. Fisher
%
function PROB =« prstop(m,N)
%
% This function computes the probability that the Martingale Algorithm
% will stop in less than or equal to N steps, beginning with
% a series of length m.
% It is assumed that the probability of WINNING, at every step, is 0.5.
%
% Compute the starting position of row i; store this in ST(i).
% If ST(i) > N, then STOP and record the needed number of ROWS in R.
L = m;
C = 0;
i - 1;
ST(1) =■ 1;
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for k « 1:(N+1)
while L-2 <= o

L = L+l;
C = C+l;

end
C = C+l;
L = L-2;
i = i+1;

ST(i) = C;
if ST(i) > N

R = i-1;
break

end
end
% Initialize the matrix that will hold all the rows:
M = zeros(R,N);
% Initialize the first and second rows.
% The first row always consists entirely of Is.
M(l,:) = ones(l,N);
% The second row always looks like 0123 starting in column ST(2)
if R > 1
M(2,(ST(2) :N)) = [0:(N-ST(2))];
end
% The remaining rows are computed as follows:
% Row k must begin in column ST(k) with a 0.
% Successive entries are computed as: M(k,j) = M(k,j-1) + M(k-l,j-l)
for k = 3:R

M(k,ST(k)) = 0;
for j = (ST(k)+l):N

M(k,j) = M(k,j-1) + M(k-1,j-1) ;
end

end
% Compute the number of STOPS for every i; store
% these in the matrix NST(i).
% First, take care of the trivial case where there is only one row:
if R = 1

for j = 1:R
NST(j) = M(l,j);

end
end
% Now, the more interesting case:
for i = 1:(R-l)

for j = ST(i):(ST(i+l)-l)
NST(j) = M(i,j);

end
end

for j - ST(R):N
NST(j) = M(R,j);

end , .% Finally, compute the desired probability:
i = 1:N;
P = (.5).Ai;
PROB = sum(P.*NST);
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prstop(m,N) is in row m and column I

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10
m=l 0.5000 0.7500 0.7500 0.8125 0.8750 0.8750 0.8984 0.9258 0.9258 0.9375
ra=2 0.5000 0.5000 0.6250 0.7500 0.7500 0.7969 0.8516 0.8516 0.8750 0.9043
m=3 0 0.2500 0.5000 0.5000 0.5938 0.7031 0.7031 0.7500 0.8086 0.8086
m=4 0 0.2500 0.2500 0.3750 0.5313 0.5313 0.6016 0.6914 0.6914 0.7334
m= 5 0 0 0.1250 0.3125 0.3125 0.4063 0.5313 0.5313 0.5918 0.6729
m=6 0 0 0.1250 0.1250 0.2188 0.3594 0.3594 0.4336 0.5371 0.5371
m=7‘ 0 0 0 0.0625 0.1675 0.1875 0.2656 0.3828 0.3828 0.4463

m=8 0 0 0 0.0625 0.0625 0.1250 0.2344 0.2344 0.3008 0.4014
nn=9 0 0 0 0 0.0313 0.1094 0.1094 0.1680 0.2656 0.2656
m=10 0 0 0 0 0.0313 0.0313 0.0703 0.1484 0.1484 0.2021
m=ll 0 0 0 0 0 0.0156 0.0625 0.0625 0.1035 0.1787
m=12 0 0 0 0 0 0.0156 0.0156 0.0391 0.0918 0.0918
m=13 0 0 0 0 0 0 0.0078 0.0352 0.0352 0.0625
m=14 0 0 0 0 0 0 0.0078 0.0078 0.0215 0.0557
m=15 0 0 0 0 0 0 0 0.0039 0.0195 0.0195
m=16 0 0 0 0 0 0 0 0.0039 0.0039 0.0117
m=17 0 0 0 0 0 0 0 0 0.0020 0.0107
m=18 0 0 0 0 0 0 0 0 0.0020 0.0020
m=19 0 0 0 0 0 0 0 0 0 0.0010
m=20 0 0 0 0 0 0 0 0 0 0.0010

N = 11 N = 12 N = 13 N = 14 N = 15 N = 16 N= 17 N= 18 N = 19 N = 20

0.9521 0.9521 0.9589 0.9676 0.9676 0.9718 0.9773 0.9773 0.9800 0.9837
0.9043 0.9177 0.9352 0.9352 0.9435 0.9546 0.9546 0.9601 0.9675 0.9675
0.8354 0.8704 0.8704 0.8870 0.9092 0.9092 0.9201 0.9349 0.9349 0.9423
0.7886 0.7886 0.8152 0.8509 0.8509 0.8685 0.8925 0.8925 0.9046 0.9212
0.6729 0.7126 0.7666 0.7666 0.7935 0.8304 0.8304 0.8491 0.8750 0.8750
0.5898 0.6628 0.6628 0.7000 0.7516 0.7516 0.7781 0.8151 0.8151 0.8342
0.5371 0.5371 0.5848 0.6524 0.6524 0.6877 0.7376 0.7376 0.7637 0.8007

0.4014 0.4570 0.5382 0.5382 0.5819 0.6448 0.6448 0.6783 0.7264 0.7264
0.3242 0.4136 0.4136 0.4637 0.^379 0.5379 0.5785 0.6377 0.6377 0.6698
0.2900 0.2900 0.3427 0.4234 0.4234 0.4693 0.5378 0.5378 0.5758 0.6318
0.1787 0.2283 0.3086 0.3086 0.3567 0.4308 0.4308 0.4733 0.5373 0.5373
0.1323 0.2036 0.2036 0.2496 0.3237 0.3237 0.3681 0.4369 0.4369 0•4766
0.1172 0.1172 0.1565 0.2240 0.2240 0.2669 0.3360 0.3360 0.3774 0.4418
0.0557 0.0847 0.1394 0.1394 0.1772 0.2412 0.2412 0.2815 0.3463 0.3463

0.0371 0.0752 0.0752 0.1049 0.1587 0.1587 0.1950 0.2558 0.2558 0.2939
0.0332 0.0332 0.0532 0.0934 0.0934 0.1230 0.1756 0.1756 0.2105 0.2684
0.0107 0.0217 0.0474 0.0474 0.0689 0.1100 0.1100 0.1394 0.1905 0.1905
0.0063 0.0195 0.0195 0.0329 0.0614 0.0614 0.0838 0.1252 0.1252 0.1541
0.0059 0.0059. 0.0126 0.0294 0.0294 0.0445 0.0748 0.0748 0.0977 0.1391
0.0010 0.0034 0.0114 0.0114 0.0201 0.0397 0.0397 0.0560 0.0876 0.0876



2.2 Tests for Specific Conjectured Components:
Linear Least-Squares Approximation
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Introduction In certain instances, a researcher may conjecture that a data
set will be well-modeled by a function of a specified
form. This conjecture may arise from a combination of experi­
ence initial data inspection, or knowledge of the mechanisms
generating the data.
For example, the data set graphed below (left) shows a linear
trend, and one might reasonably seek constants m and b so that
the function f(x) = mx + b ‘fits’ the data well. (The notion of
‘fit’ is addressed precisely in this section.)
As a second example, the data set {(*,-,  i/i)}£Li graphed below
(right) appears to have a global quadratic component. There
also seems to be some interesting local periodic behavior—the
curve seems to oscillate about a parabola. These observations
might lead one to suspect that there are constants a, b and c
for which the function

quadratic component

y(f) = at2 + bt + c + < some periodic component >

will give a good ‘fit’ to the data. A researcher might attempt
to identify the quadratic component, and then subtract it off,
in order to isolate and study the more local periodic behavior.

QUADRATIC TREND

‘fitting’ data;
interpolation
(fitting function
passes through
each data point)

There are many ways to quantify the notion of ‘fitting’ a data
set {(ti,y.)}ili with a function f. One very strong condition is
to require that the function f pass through every data point;
i.e., /(t,) = I/,- for all i. The process of finding such a function
is called interpolation-, and the resulting function is called an
interpolate (of the data set).
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As illustrated below, there are many possible interpolates for
a given data set. Usually, the interpolating function is selected
to have some additional desirable properties. For example,
the interpolate may be required to be a single polynomial (see
Section 2.5). Polynomial interpolation has the disadvantage
that one often gets large oscillations between the data points.
To avoid such oscillations, one can alternately use cubic poly­
nomials that are appropriately ‘patched together’ at the data
points—the resulting interpolate is called a cubic spline, and
is also discussed in Section 2.5. Interpolates axe often used to
supply missing data values.
The exact matching required in interpolation may not be pos­
sible if a function of a specific form is desired; for example, no
linear function /(x) = mx+b can be made to pass through three
non-collinear points. More importantly, such exact matching
may not even be justified in situations where each data value
is potentially ‘contaminated’ by noise. In such cases, it often
makes more sense to seek a function that merely ‘comes close’
to the data points—this leads to a method of ‘fitting’ a data
set that is commonly called approximation.

TWO INTERPOLATES OF A DATA SET

‘fitting’ data;
‘objects being close
is made precise
via a norm

One way to make precise the notion of ‘objects, being close’ in
mathematics is by the use of a norm. Roughly, a norm is a
function that measures the size of an object; the ‘size’ of x is
often denoted by ||z|| and read as lthe norm of x\ The norm
(and underlying vector space structure) then allows one to talk
about the distance between objects; the distance between x and
y is ||x - y||. The objects x and y are ‘close’ (with respect to the
given norm) if ||z - j/|| is small. Appendix 2 gives the precise
definitions of a norm, a vector space, and related results.
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EXAMPLE
a norm on R

For example, the absolute value function is a norm on the real
numbers. For every real number x, the nonnegative number
|i| ‘measures’ x by giving its distance from zero on the real
number line. Given any real numbers x and y, the distance
between them is |z - y|; so x and y are ‘close’ (with respect to
the absolute value norm) if |ar - y| is small.

0 y

k-y|
-t—i
X y

EXAMPLE
a norm on Rn

Let Rn denote all n-tuples of real numbers,

Rn == {(*!>•••  ,*n)  I Xi G R, 1 < i < n} .

Addition and subtraction of n-tuples is done componentwise.
Elements of R" are commonly called vectors (since Rn is a vector
space). Let x denote a typical element in R". A norm on Rn is
given by 

||x|| := yx2 + ... + x2 .

This norm is called the Euclidean norm’, the Euclidean norm of
an n-tuple is the square root of the sum of its squared entries.
When n equals 2 or 3, the nonnegative number ||x|| has a nice
geometric interpretation—it gives the length of the arrow from
the origin to the point with coordinates x. Two n-tuples x and
y are ‘close’ (with respect to the given norm) if ||x—y|| is small.

in the context of
matrix
manipulations,
elements ofRn
are viewed as
column vectors

In this dissertation, whenever an element of Rn is used in the
context of matrix manipulations, it will be represented as a
column vector.



Letting y be the column vector
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■yr
V2

-yn-

then y‘ (y transpose) is the row vector

[yi V2 ••• yn] ,

and the Euclidean norm of y, squared, is displayed in matrix
notation as:

l|y||2 = y? + -- + y2

= [yi y2

= y‘y •

ryil

Lj/n J

approximation
(fitting function
approximates the
data set
relative to a
given norm)

A function f is said to approximate a data set {(ii.y.)}^! if it is
‘close to’ the data set, in some normed sense. The process of
finding such a function is called approximation. The sketches
below illustrate two types of approximation. Least-squares ap­
proximation, discussed in this and the next two sections, is
so-called because it seeks a function that minimizes the sum of 
the squared distances between the approximating function and
the data set. Minimax (or Chebyshev) approximation seeks to
minimize the maximum distance between the data set and ap­
proximating function; although simply stated, the mathemat­
ics is difficult, and minimax approximation is not discussed

2 minimizeminimize
f
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least-squares
approximation

The method of least squares arises when the Euclidean norm
(1) is used for approximation, as follows.
Let 7 be a set of real-valued functions of one real variable, the
members of which are to serve as candidates for approximation
of the data set Denote a typical function in 7 by
/, and let f denote the TV-tuple (/(ix) /(<//)), formed by
letting f act on the N time values (h tN). The TV-tuple of
data values y := (yi,... ,yjv) can be compared to the TV-tuple f
via the Euclidean norm given in (1):

(2)

a least-squares
approximate

The sum in (2) is nicely interpreted as the error between the
function f and the data set. Allowing f to vary over all the
members in 7, one can investigate the corresponding errors.
If a function f can be found that minimizes this error, then
it is called a least-squares approximate, from 7, to the data
set. For such a function f (with corresponding TV-tuple f := 

so that, for all f G 7, 

l|y-f|| = ™n||y-fll >

l|y-f|| < l|y-fll •
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existence and
uniqueness of
the least-squares
approximate

min 11*11x£X
is equivalent to
^IWI2

LEMMA

PROOF

Since f minimizes the error, it is a best approximation to the
data set from IF. If f is unique, then it is the best approximation
from J-.

If the set 7 contains a finite number of functions, then such a
minimizing function f can always be found (but may not be
unique). In most interesting applications of least-squares ap­
proximation, however, the set J" contains an infinite number of
functions, and existence and uniqueness of a best approxima­
tion is more delicate.

The appearance of the square root in (2) is bothersome, and
can be avoided by a simple observation, which is:

Let X be any set on which a norm is defined. If there exists
x G X for which

11*11  = 11*11  ix£X

then
||x||2 = min||x||2.

Conversely, if ||£||2 = minrex ||z||2, then ||i|| = minxg% ||r||.

Suppose there exists x G X for which ||£|| = minl6x ||z||. Then,

||i|| < ||z|| for all x eX.

Since the squaring function f(x) = x2 increases on [0, oo), it fol­
lows that

ll*H 2 < ll*l| 2 for all z e X ,

from which ||£||2 = minr6x ||z||2 . The converse uses the fact that
the square root function increases on [0, oo). |
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With this observation, the approximation problem

™n||y-f||

can always be replaced by the equivalent problem

™n||y-f||2 >

whenever it is convenient to do so. Such a replacement elimi­
nates the bothersome square root sign in (2).
A frequently-occurring case of least-squares approximation is
discussed next, together with its MATLAB implementation.

Suppose that a data set {(ti,!/:)}^i and m real-valued functions
of one real variable, /i,... , fm, are given. Let

J” := {ci/i 4----- 4- Cmfm | c,- € R, 1 < i < m}

be the class of functions to be used in approximating the data
set. Note that each function in J- is a linear combination of
the functions /i,...,/m; hence the name linear least-squares
approximation. However, the functions /,• certainly need not
be linear functions; in many practical applications, the /,• will
be polynomials or sinusoids. The function fa is usually taken to
be fa(t) = 1, to allow for a constant term in the approximating
function.

The goal of least-squares approximation is to find real con­
stants 6i,... so that the function f given by

/(t) := 61/1 (t) + 62/2^) + • • • + bmfmlt')

minimizes the sum
J2(y. -/(i.))2 •
i=l

Evaluation of the function / at the N time values fa,... ,tN
yields N equations

/(ti) = 6i/i(tl) + 62/2G1) 4--------- <■ 6m/mGl)

flfai) = 61/l(t2) + 62/2G2) 4- • • • 4- 6m/m(^2) (3)

/(t/v) = 6i/i(i;v) 4- (>2/2(1^ 4 H 6m/mGw) ■
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By defining

f :=
■/(«!)'

, X:=

' AGO
/1G2)

••• /rn(<l)l

/mOa)
, and b •—

■bi'

-/iGjv) /m(^w)- -bm.

the system in (3) can be written as

f = Xb .

The sizes of the matrices f, X, and b are, respectively, N x 1,
N x m, and m x 1.

Define y to be the column vector of data values,

Then, y has size N x 1, as does y - Xb.

The least-squares problem is to minimize

SSE := ||y - f ||2 = ||y - Xb||2 = (y - Xb)‘(y - Xb) ,

where SSE stands for ‘sum of the squared errors’. SSE is to be
viewed as a function from Rm into R; it takes an m-tuple b and
maps it to the real number (y -Xb)‘(y - Xb). Indeed, SSE is a
differentiable function of b [G&VL, 221ff]. Therefore, a neces­
sary condition to minimize SSE is that its partial derivatives
with respect to the components b, of b equal zero. Appendix 3
shows that the partial derivatives of SSE are contained in the
m-column vector

2(X‘Xb - X‘y) .

Therefore, a minimizing vector b must satisfy

O = 2(X‘Xb - X‘y) ,

or, equivalently,
X‘Xb = X'y .
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the least-squares
parameters b

PURPOSE
and
NOTATION

REQUIRED
INPUTS

If X‘X is invertible, then

b = (X'XJ-’X'y

gives the unique least-squares parameters. Observe that the
matrix X‘X is an m x m real symmetric matrix; the invertibility
of X'X is discussed in Section 2.3 and Appendix 2.
A MATLAB procedure for finding the least-squares parameters
b is discussed next.

MATLAB IMPLEMENTATION

Linear Least-Squares Approximation

Let {(ti,i/i)}£Li be a given data set, and let fi,... ,fm be m real-
valued functions of a real variable.
Define:

t := (ti,... ,In) ,

y := (j/i....... Un) ,
f(t) :=b1f1(t) +■•• + brnfrn(t) for bi G R, 1 < i < m , and

f:= (/(ti),...,/(M •

The linear least-squares approximation problem is to find spe­
cific choices for bi,... ,bm so that the error

l|y—^ll2 =
i=l

is minimized.

• the N time values it- are stored in an //-column vector called
^5

• the N data values y,- are stored in an //-column vector called
y-
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MATLAB
COMMANDS

The following list of MATLAB commands will produce (under
suitable conditions) a column vector b with entries bi.......bm
so that f(t) = 61/1 (/) + ••• + 6m/m(t) gives the least-squares ap­
proximate to the data set. The actual data set is plotted on
the same graph with the best approximating function, and the
least-squares error is computed.
The example following these commands explains and illustrates
and procedure.
11 = < insert definition of fi here >
12 = < insert definition of f? here >

Im = < insert definition of fm here >
X = [11 12 Im];
b = (X'*X)  \ (X'*y)
1 = X*b;
plot(t,y,’x’.t.l,’.’)
ERROR = (y - l)'*(y  - 1)

EXAMPLE The following list of MATLAB commands produces a set of
‘noisy’ data of the form

j/G) = 3.2 - .7t + ,05/2 + sin < noise > ,0

which is the ‘known unknown’. A least-squares approximate
of the form

/G) = 6i + bit + 63 i2 + 64Z3 + 65!4

is computed. There are 5 approximating component functions:

AG) = 1 > AG) = t, f3(t) = t2, AG) = t3 , AG) = t4.

The actual data set is graphed together with its least-squares
approximate, and the error is computed.
Based on an analysis of the difference between the actual data
and the approximate, the form of the approximating function is
updated, and a second least-squares approximate is obtained,
which gives a beautiful fit to the actual data.
The lines are numbered for easy reference in the discussion that
follows.
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1) t = [0:.l:20]';
2) N = .5*(2*rand(t) - 1);
3) y = 3.2 - .7*t + .05*t.A2 + 2*sin(2*pi*t/3) +.N;

ERROR =

16.0330
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analysts of
each line

1) A time vector is created; entries begin at 0, are evenly
spaced with spacing 0.1, and end at 20. The prime mark
' denotes the transpose operation, and makes t a column
vector. The semicolon (;) at the end of the line sup­
presses MATLAB echoing.

2) H is a column vector the same size as t with entries uni­
formly distributed on [-.5, .5].

3) The data values y axe computed. Recall that t.“2 gives a
MATLAB array operation; each element in t is squared.

4) The data set is plotted as a line graph. That is, MATLAB
‘connects the points’ with a curve.

5) The first function is fi(t) = 1. The MATLAB command
onea(t) produces a vector the same size as t, with all
entries equal to 1.

6-9) The functions f2(t) = t, f3(t) = t2, f4(t) = t3 and f5(t) = t4
are evaluated at the appropriate time values.

10) The matrix X is formed by laying the column vectors ±1
through 15 next to each other.

11) The least-squares parameters b are computed. The back­
slash operator \ provides a way of doing ‘matrix division’
that is more efficient than calculating the inverse of a
matrix. More precisely, solving Ax = b via the MATLAB
command

x = inv(A) * b

would cause MATLAB to calculate the inverse of A, and
then multiply by b. However, solving Ax = b via the
MATLAB command

x = A \ b

(to understand this, read it from right to left as ‘b di­
vided by a’) solves the system using Gaussian elimination,
without ever calculating the inverse of A. This method is
greatly preferred from a numerical accuracy and efficiency
standpoint.
Since there is no semicolon at the end of the line to sup­
press MATLAB echoing, the column vector b is printed.

12) The least-squares approximate is computed at the time
values of the data set, and called f.

13) The actual data is point-plotted with the symbol ‘x’; on
the same graph, the least-squares approximate is point
plotted with the symbol .
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X*X  is often
‘close to’
noninvertible

14) The least-squares error is computed and printed.
15-16) The difference between the actual data and approximat­

ing function is computed as DIFF, and plotted.
17-18) Visual inspection shows that the difference seems to be

a sinusoid of period 3. (Alternately, techniques discussed
later on in this dissertation can be used to reach this con­
clusion; see Section 2.6). Thus, least-squares is applied
again with an additional function /6(t) = sin The new
column vector 16 is computed, and X is updated by con­
catenating this new column vector.

19-21) The new least-squares parameters and function are com­
puted, and a graph showing the ‘fit’ is plotted.

22) The new ERROR is computed, confirming that a beau­
tiful fit has been achieved.

If desired, the procedure described here can be automated into
a MATLAB M-file.

As the number of component functions - ,fm increases,
the matrix X*X  often approaches singularity; that is, it looks
more and more like a noninvertible matrix. This can cause the
procedure just described to break down. In the next section,
the matrix XfX is studied in more detail, and the concept of
orthogonal functions is introduced as a method of overcoming
the ‘near singularity’ of XfX.
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2.3 Computer Application Considerations for Linear Least-Squares

Condition Numbers

theory
versus
application

In the previous section, it was shown that the problem

min ||y-Xb||2

has a unique solution, provided that the square matrix X'X is
invertible. Theoretically (using exact arithmetic), the invert-
ibility of a square matrix A is easily characterized in a variety
of ways: for example, A is invertible if and only if the determi­
nant of A (denoted by det(A)) is nonzero, and in this case, the
unique solution to Ax = b is given by x = A~^b. However, when
the entries of a matrix are represented only to the degree of
accuracy of a digital computer, the question of invertibility is
more subtle: there are invertible matrices A for which correct
numerical solutions to Ax = b are difficult to obtain, stemming
from the fact that small changes in the matrices A and b can
lead to large changes in the solution x.

EXAMPLE
MATLAB casts
suspicion on
a solution vector

To illustrate this point, reconsider the MATLAB example of
the previous section, where a 4th-order polynomial least-squares
approximate of the data

y(t) = 3.2 - .It + .05t2 + sin —+ < noise >o

was found. If, alternately, a 7th-order polynomial approximate
was sought, the MATLAB user would have been faced with
this warning, casting suspicion on the resulting vector b:

b = (X'*X)  \ (X'*y)
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 2.866189e-020

the contents of
this section

The size of X'X is only 8 x 8; however, the entries of X‘X are
such that the matrix does not lend itself nicely to numerical
computation. This problem is the subject of the current sec­
tion.

More precisely, this section gives an analysis of the system
Ax = b in order to understand the sensitivity of solutions x to
small changes in the matrices A and b. A number cond(A) will
be defined that measures this sensitivity.
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For a ‘sensitive’ system, correct numerical solution can be chal­
lenging, but the problem can often be overcome by replacing
the system Ax = b with an equivalent system Ax = 6, where
the new matrix A is more suitable for numerical computations.
This replacement requires a knowledge of discrete orthogonal
functions, which are also discussed in this section.

<t>: X-+Y
is a map between
normed spaces

Let <t>: X —♦Y be a function between normed spaces. The reader
is referred to Appendix 2 for a review of normed spaces. The
symbol || • || will be used to denote both the X and Y norms,
with context determining the correct interpretation.

relative error Let x g X, and let x be an approximation to x. For x 0, the
relative error of x (as an approximation to x) is defined to be
the number

II*- *11  .
11*11  ’

similarly, for <^(x) / 0, the relative error of <f>(x) (as an approxi­
mation to <£(x)) is the number

IM*)  - ^(x)||
IM*)II  '

condition number
for a function
between
normed spaces

A desirable situation for the function is this: when the rel­
ative error in x is small, so is the relative error in <£(£). In
other words, small input errors lead to small output errors. To
quantify this input/output relationship, the idea of a condition
number is introduced:

DEFINITION
condition number
for<}>:X—+Y,
at x E X

Let </>: X —> Y be a function between normed spaces, and let
x G X. If a real number c > 0 exists for which

||^(x) - ^(x)|| ||x - x||
IM*)II  M

for all x sufficiently close to x, then c is called a condition
number for <f> at x.
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interpreting the
condition number

This definition shows that c gives information about the am-
plification of relative input errors. If c is small, then small
input errors must produce small output errors. However, if
c is large, or if no such positive number c exists, then small
input errors may produce large output errors. In numerical
problems, where numbers often inherently contain error (due
to a forced finite computer representation), such considerations
become important.
Note that the definition of condition number is dependent on
both the norm in the domain X, and the norm in the codomain
Y.

What are to
be viewed as
the ‘input’
and ‘output’
for the system
Ax = b ?

For an invertible matrix A, the system Ax = b will be analyzed
as follows: the matrices A and b are taken as the ‘inputs’ to
the system, and a solution vector x is the ‘output’. When the
inputs A and b change slightly (say, by replacing theoretical
matrices A and b by their computer representations), then it
is desired to study how the solution x changes. The Euclidean
norm || • || will be used to measure ‘changes’ in the n x 1 matrix
b. It is also necessary to have a means by which to measure
changes in the matrix A; this means will be provided by a
matrix norm, defined next. In this next definition, sup denotes
the supremum, i.e., the least upper bound.

DEFINITION
the 2-norm
for matrices

Let A be any n x n matrix, and let || • || be the Euclidean norm
on R". The 2-norm of the matrix A is given by

ll^lh “ SUP ^rr •
®6R", IfII

norm(A) .

It can be shown that the 2-norm is indeed a norm on the vector
space of all nxn matrices. Consequently, if ||A||2 = 0, then A = O,
where O denotes the nxn zero matrix. Thus, if ||?1112 = 0, then A
is not invertible. Equivalently, if A is invertible, then ||yl||2 / 0.

MATLAB The number ||>1||2 is approximated in MATLAB via the com-
approximation to mand
IRII2
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There are other matrix norms (see, e.g., [S&B, p. 178]), many
of which are more easily calculated than || • ||2, but it will be
seen that the 2-norm is particularly well suited to the current
situation. The reader versed in functional analysis will recog­
nize the 2-norm as the norm of the bounded linear operator
A: Rn -> Rn, when the Euclidean norm is used in R".

It is immediate from the definition of ||A||2 that for any x / 0,an important
consequence of
the definition

so that for all x,
l|Ax|| < ||A||2 • ||x|| . (1)

Thus, the number ||A||2 gives the greatest magnification that a
vector may attain under the mapping determined by A. That
is, the norm of an output ||Ax|| cannot exceed ||A||2 times the
norm of the corresponding input ||x||.

The 2-norm is not easy to compute. (★ When A has real num-computing ||A||2
ber entries, ||A||2 is the square root of the largest eigenvalue of
the matrix A*  A.) However, it is easy to obtain an upper bound
for ||A||2 as the square root of the sum of the squared entries
from A, as follows:

Let x = (xi,... ,xn)‘, so that x is a column vector, andgetting an
upper bound
for ||A||2

ihi=(ib1*

Let aij denote the element in row i and column j of the matrix
A. The ith component of the column vector Ax is denoted by
(Ax),-, and is the inner product of the ith row of A with x:

(Ax), = J^ayxj .
i=i
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Then,

a.-.-r 4

(Cauchy-Schwarz)

(The Cauchy-Schwarz Inequality is reviewed in Appendix 2.)

the Frobenius
norm, ||>1||f,
is an
upper bound for
ll^lh

Thus, for any x / 0, division by ||x||2 yields

so that taking square roots gives

Mb ~ »»p M
X€B" Irll

1/2

:=I|A||f.

The square root of the sum of the squared entries from A gives
another norm of A, called the Frobenius norm, and denoted by
||A||f [G&VL, p. 56].

★
singular values
of A

Many of the ideas discussed in this section are conveniently
expressed in terms of the singular values of A. In particular,
the norms ||A||2 and ||tIHf have simple characterizations in terms
of the singular values. The singular value decomposition of a
matrix is discussed in Appendix 2.

With the matrix 2-norm in hand, the analysis of the system
Ax = b can now begin. It is assumed that A is an invertible
n x n matrix with real number entries. It is desired to study
the sensitivity of solutions x of this system to small changes in
A and b.
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motivation for
the definition of
the
condition number
of a matrix

[S&B, 178-180] Begin by supposing that only the column vec­
tor 6 changes slightly; A remains fixed. What is the correspond­
ing effect on the solution x? The analysis of this situation will
motivate the definition of the condition number of a matrix.
Let

Ax = b
and Ax = b

be true statements; that is, x- denotes the system solution when
column vector b is used, and x denotes the system solution when
column vector b is used. Define

Ax := x — x
and A6 := b - b ,

so that
XAx = At .

Since A is invertible (by hypothesis),

Ax = A"1 Ab .

Talcing norms and using property (1) gives

||Ax|| = HA-^A&II < .||A6|| .

Let x 0; division by the positive number ||x|| gives

||Ax|| ||A~1||2-||At||
11*11  - INI

Since b = Ax, it follows that ||t|| < ||^4||2 -||x|| and hence < 1^;
substitution into the previous display yields

l|Ax||
11*11

This inequality shows that the constant ||A~11|21|>1||2 gives infor­
mation about how an error in b is potentially ‘amplified’ to pro­
duce an error in the solution x. Thus, the number ||A—x||2 ||A||2
is a condition number for the function that ‘inputs’ a column
vector b, and ‘outputs’ a solution to the system Ax = b. With
this motivation, the next definition should come as no surprise:
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DEFINITION Let A be an invertible matrix. The condition number of A is
condition number
of a matrix cond(A) := ||A"*|| 2 • ||A||2 .

MATLAB
approximation to
cond(A)

The condition number cond(A) is approximated in MATLAB
via the command

cond(A) .

properties of
cond(A)

When cond(A) is close to 1, A is said to be well-conditioned, and
when cond(A) is large, A is said to be ill-conditioned. It is always
true that cond(A) > 1, as follows. Since ||A||2 > for all y / 0,
take y to be A-1x, thus obtaining

||A(A-MII
nA-is||

, IM
- ||A-M

11*11
- I|A-M|2||x|| ’

from which

||A||2||A ||2 > ||A_i||2 ii^n ||A ||2

= 1 .

orthogonal
matrix

If A is an orthogonal matrix (that is, A*  A = I, or equivalently,
A-1 = A‘), then it can be shown that cond(A) = 1.

rcond(A) When MATLAB issues warnings regarding ill-conditioned ma­
trices, it reports the information in terms of the reciprocal of
the condition number,

rc“d<‘) := cond(J) .

If A is well-conditioned, then rcond(A) is near 1.0; if A is ill-
conditioned, then rcond(A) is near 0.

It is important to note that, in the system Ax = b, the sensitivity
of solutions x to small changes in 6 clearly has more to do with
A than with b.
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cond(A)
does indeed
measure
sensitivity to
changes in
BOTHA and b

Since A is invertible if and only if det(A) / 0, one might conjec­
ture that when the determinant of A is close to 0, then solutions
to Ax = b are sensitive to small changes in A. However, this is
not the case. The examples below show that det(A) can be
made as small as desired, while keeping cond(A) = 1.

X = X =

0.1000 0 0.0100 0
o 0.1000 0 0.0100

D = det(X) D = det(X)

D = D =
0.0100 1.0000e-004

C = cond(X) C = Cond(X)

C = C =
1 1

The definition of the condition number of a matrix was mo­
tivated by studying the sensitivity of solutions to Ax = 6 to
small changes in b. Does the number cond(A), as defined, also
measure the sensitivity of solutions to changes in both A and
i? The following discussion shows that the answer is ‘Yes’.
[G&jVL, 79-80] Allow BOTH A and b to vary in the system
Ax = b; recall that A is assumed to be invertible.
Denote a change in A by eF, where F is an n x n constant
matrix and e > 0. Similarly, denote a change in b by ef, where
f is a fixed n x 1 matrix. Different values of e lead to different
approximations A := A+eF and b := b+ef of A and 6, respectively.
Let z(e) denote the solution of the ‘perturbed’ system Ax = b;
the situation is then summarized by

(A + eF)x(e) = b + ef, r(0) = x .

Differentiating both sides with respect to e yields

(A + fF)i(e) + Fz(e) = f ;

evaluation at e = 0 and a slight rearrangement yields

A£(0) = f - Fx ,

or, since A is invertible,

i(0) = A-'tf-Fx') . (2)
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The Taylor expansion for x (as a function of the single variable
e) is

________ »(e)________

x(e) = x + ei(0)+ ^e2 + ^€3 + --- .

The notation o(e) is used to represent the fact that the indicated
terms converge to 0 faster than e converges to 0; that is,

lim
e—0 €

= 0 .

Thus, when e is close to 0, the power series is well-approximated
by its first two terms.

Substitution of formula (2) for i(0) into the approximate equa­
tion x(e) = x + ei(0) gives the approximate equation

z(e) = x + eA~l(J - Fx) ;

rearranging and taking norms yields

||x(e)-x|| = ||M-1(/-Fz)||

Division by ||r|| and rearrangement gives

-114-111 lun f, Ml ,-I1 11,11 ^VIMIhlM IMIlJ=cond(4mM +
< cond(A) M +

Recalling that ef and cF denote changes in b and A, respec­
tively, this final form shows that the condition number of A
does indeed measure the sensitivity of solutions to changes in
the initial data A and b.
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XfJ = /,(*.) ,

Discrete Orthogonal Functions

Introduction Next, the concept of discrete orthogonal functions, and MAT­
LAB implementation of these ideas, is introduced as a way of
dealing with sensitive systems that may arise from linear least­
squares approximation. The reader is referred to Appendix 2
for a review of the linear algebra concepts (e.g., inner products,
orthogonal vectors, Gram-Schmidt process) that appear in this
section.

replacing the
modeling functions

If MATLAB balks in a solution attempt of the the linear least­
squares problem

min||y-Xb||2 , (3)

because the condition number of X‘X is too large, then what
can be done? One solution is to transform the set of modeling
functions fa,f2.......fm into a replacement set Fi,F2,... ,Fm, that
has the following properties:
• Any function representable as a linear combination of the

fi is also representable as a linear combination of the F,-
(and vice versa): that is,

{ci/l 4----- +■ Cmfm | Cj G R} = {C1F1 -|----- 1- cmFm | c,- € R} .

• The matrix X‘X that results from using the functions F{
is much better suited to numerical computations than the
matrix X‘X that uses the original

The new functions Fi will be linear combinations of the origi­
nal functions fi, and consequently will usually be considerably
more complicated than the original

NOTATION
A,7

For a matrix A, the notation Ay is used to denote the entry in
row i and column j of A.

analysis of
X!X

Recall that the matrix X in the linear least-squares problem
(3) is constructed by setting
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where /,• (i = 1,... ,m) are the modeling functions, and t, (i =
1,. • • , N) are the time values of the data points (see Section 2.2).
Therefore, X- = Xj,- = /,•(<>). The ijih entry of X‘X is found by
taking the inner product of the ith row of X‘ with the jth column
of X, yielding

N
(X^^X^Xy

4=1
N

(4)
4=1

If the matrix X‘X is diagonal, then the system X‘Xb = X‘y is
trivial to solve for b. From (4), it is clear that X‘X is diagonal
if and only if

N
^2/fi(tk)fj(tk) = 0 foralli/j> =
t=i

Functions /,• and time values t,- that satisfy such a condition are
therefore particularly desirable. This idea is captured in the
following definition:

DEFINITION
discrete
orthogonality

Let fi.......fm be real-valued functions of one real variable, and
let ti,... ,In be N distinct real numbers.
The functions fi,... ,fm are mutually orthogonal with respect to
the time values ti,... ,t^ if

N
52 = o for all i / j, i,j=l.......m .
4=1

Functions {A}™ i satisfying this property are informally referred
to as discrete orthogonal functions.

NOTATION
(u.v)

For vectors u := («i,... ,uN) and v := (vi,... ,vx) in R^, the no­
tation (u, v) denotes the Euclidean inner product of u and v:

N
(u-v> = 52uit/* •

4=1

Vectors u and v are orthogonal if and only if (u,v) = 0.
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NOTATION Let T = (fi,... ,t/v) be an TV-tuple of distinct time values, and let
f(T), f be a real-valued function of one real variable. The notation
f f(T) denotes the TV-tuple

f(T) := (/(ti),...,/(M .

If T is understood from context, then f(T) is more simply writ­
ten as f.
In particular, a function /,• has associated TV-tuple

fi := (/i(*i) ......./.(^)) •

EXAMPLE

With the notation above, functions fi,... ,fm are mutually or­
thogonal with respect to time values T = (tlt... , fw) if and only
if f, is orthogonal to f), whenever i / j.

In a typical linear least-squares application, the number of ap­
proximating functions (m) is much less than the number of
time values (TV). In this case, the m vectors fi,... ,fm span a
finite-dimensional subspace of R77.
If the vectors fi fm are linearly independent, then they span
an m-dimensional subspace of Rw. In this case, the Gram-
Schmidt orthogonalization procedure can be used to replace
the original vectors f; by new vectors Ft- that are mutually or­
thogonal in Rw, and that span precisely the same subspace of
R^. Correspondingly, the original functions fi are replaced by
new functions F,- that are mutually orthogonal with respect to
T. This procedure is illustrated in the next example.

Let
/iW = l. f2^ = t, f3(t) = t2,

and let
T = (1,2,3) .

Then,

fi = (1,1,1), f2 = (1,2,3) , and f3 = (1,4,9) .
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The Gram-Schmidt process yields:

p,=efts’1'1’1,1
r’ = CTijo = -= . -d
F = ~ <f3’Fi>Fi ~ (f3,F2)F2 _ _ 1

3 ||f3-(f3,F1)F1-(f3)F2)F2|| "■ yr ’ ' }

It is routine to check that the F,- are mutually orthogonal in
R3.

the corresponding By writing the F,- as linear combinations of the fj, one obtains
functions F, the corresponding continuous functions F,-, which are mutually

orthogonal with respect to T:

P!=J:-iwM=- <“>!?>>=-2fi)
=> F2(Z) = -^(t-2);

V **

F  f3-(f3,F1)F1-(f3,F2)F2
3 ||f3-(f3)F1)F1-(f3)F2)F2||

=> F3(t) = 4=(3t2 - 12t + 10) .
v6

i(3f3 - 12f2 + 10fi)
vo

The functions /,• and Fi axe graphed below.
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Next, MATLAB implementation is provided to transform a
set of functions {/i into a set of mutually orthogonal
functions with respect to time values T := (ii,... ,tn), providing
that the vectors f, obtained from /,■ and T are linearly indepen­
dent.
The algorithm used in the MATLAB function exploits the rela­
tionship between the functions /,• and the corresponding func­
tions F,. To illustrate this relationship, first use the Gram-
Schmidt procedure on the vectors f< to obtain the correspond­
ing mutually orthogonal vectors F,-:

1 ' llfill ’
f2-(f2,Fi)Fi

2 ||f2-(f2,F1)F1|| ’
F f3-(f3,Fi)F1-(f3,F2)F2

3 ||f3-(f3,F1)F1-(f3)F2)F2|| ’

Note that each F,- is of the form ; define A,- := Then,
write each F,- as a linear combination of the

Fi = Aifi ,
F2 = A2(f2 - (fz.FOAifi)

= K2f2-K2K1{i2,F1)f1 ,

In this way, each vector F,- is a linear combination of the origi­
nal vectors , which determines the relationship between
the functions /,• and F{. The coefficients relating /,■ and Ff are
recorded in a matrix M: the rows are labeled as Fi and the
columns as so that

F, = Mfi/i + M,-2/2 + • • • + M,m/m .

The first few entries of M are shown in the following diagram:
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The MATLAB algorithm exploits the following observations
regarding the structure of M:
• The numbers A,- form the main diagonal.
• The element Mlt is easily determined from M(,_i)j, for

i > 3.
• Once element M,i is known, all the entries on the sub­

diagonal beginning with M,i are easily determined.

MATLAB IMPLEMENTATION

Converting Functions to Discrete Orthogonal Functions

PURPOSE
and
NOTATION

Let A fm be m real-valued functions of a real variable. Let
T = (/i,... ,In) be a vector of N distinct real numbers, where
m < N.
Suppose that the vectors f,, defined by

f; = (A(M......AM) ,

are linearly independent in Ry.

The following MATLAB function produces a matrix M that
contains the coefficients relating the functions /,• to functions
Fi that are mutually orthogonal with respect to the times values
in T. Precisely, for every i = 1 m,

Fi = Mii/i + • • • + M,m/m
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using F
and M
to solve a
sensitive
least-squares
problem

Optionally, the function will return a matrix F that contains
the mutually orthogonal vectors F,-, with F,- in column »:

F =
I

Fi |
I

I
F2 I

I
I Fm

The matrices M and F can then be used to obtain an improved
solution to a sensitive least-squares problem

min ||y - Xb||2 ,
bgBm

where X,j = fj(ti), and where X‘X has a large condition number,
as follows:

• Replace X by F, and use the MATLAB implementation
from Section 2.2 to find a vector bnew = (61,..., 6m) so that

/(<) = *iFi(/)  + --- + 6mFm(i)

gives the least-squares approximate to the data
• Then, use the relationship between the functions /,• and Fi

(contained in M) to express /(<) as a linear combination of
the original functions /,•:

= &i(Mh/i + M12/2 -I---------F

+ 62(^21/1 + M22/2 + • ■ ■ + M2m/m)

+ •••
+ + Mm2/2 -I---------F Mmmfm)

= + 62M21 -I---------F 6mMmi)

+ /2(&1M12 -F 62M22 + • • • -F tmMm2)

+ •••
+ + biM-tm + • • • + bmMmm)

“ &1/1W + • • • + bmfmft) .

The coefficients b .- (blt... ,bm) are obtained by:

b = M‘(bnew) .
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function [M,F] - dscorth(T,f,m)
J T is the input column vector of times
4 f is the N x m matrix where column i is the vector fi
4 m is the number of functions
4 initialize the matrix to hold the orthogonal vectors Fi
F = zeros(length(T),m);
% initialize the matrix to hold the coefficients relating fi to Fi
M = zeros(m,m);
4 initialize the vector to hold the norms of the Fi
K » zeros(l,m);
4 compute the K(i) and Fi
for i = l:m

j = i;
num = f(:,i);
while j < i

NUM = NUM - (f(:,i)'*F(: ,j))*F(: ,j);
j = j+1;

end
K(i) - l/norm(NUM);
F(:,i) - NUM*K(i) ;

end
4 Compute the coefficients relating fi and Fi
4 First compute the elements on the main diagonal
for i = l:m

M(i,i) = K(i) ;
end
4 Compute the remaining elements
k = 2;
while k <“ m

i = k;
j - I-’
while i <- m

M(i,j) - (f(:,i)'*F(: ,j:i-1))* (~K(i)*M(j :i-1,j));
j = j+i;
i - i+1;

end
k = k+1;

end

EXAMPLE In the following diary of an actual MATLAB session, a data set
is fitted with a polynomial of degree 14, in order to illustrate
how large condition numbers can cause degraded results, and
how the use of discrete orthogonal functions can improve the
situation.
The ‘traditional’ least-squares solution results in a matrix X‘X
with an extremely large condition number, yielding a ‘best fit’
that has error 443.6303.
By using the mutually orthogonal function approach, the error
is decreased significantly, to 273.5300.

t - [0:.l:20]';
N - .5*(2*rand(t)  - 1);
y - 3.2 - .7*t  + .05*t. A2 + 2*sin(2*pi*t/3)  + N;
fl - ones(t);
f2 - t;
f3 - t.A2;
f4 - t.A3;
f5 - t.A4;
f6 = t.A5;
f7 - t.A6;
f8 - t.A7;
f9 - t.A8;
fio - t.A9;
fll - t.A(10);
fl2 - t.A(ll);
fl3 - t.A(12);
fl4 - t.A(13);
fl5 - t.A(14);
X - [fl f2 f3 f4 f5 f6 f7 f8 f9 flO fll fl2 fl3 fl4 fl5];
b - (X'*X)  \ (X'*y)

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND “ 6.208041e-040
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4.4985
-7.4163
22.4853

-26.4539
14.9247
-4.7515
0.9246

-0.1128
0.0083

-0.0003
-0.0000
0.0000

-0.0000
0.0000

-0.0000

[M,F] = dscorth(t,X,15);
bnew - (F'*F)  \ (F'*y)j
btilde - H'*bnew

btilde -

2.7347
6.1579
3.9543

-22.4910
21.5315

-10.2060
2.9203

-0.5486
0.0706

-0.0063
0.0004

-0.0000
0.0000

-0.0000
0.0000

fold - X*b;
fnew " X*btilde;
errorl - (y - fold)'*(y  - fold)

errorl -

443.6303

error2 - (y - fnew)'*(y  - fnew)

error2 -

273.5300

plot(t,y,'x',t,fold,'.',t,fnew,'o')

data points

‘traditional’ least-squares
solution

improved fit,
obtained from the
discrete orthogonal
function approach
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A Linearizing Technique and Gradient Methods
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Introduction Let {(<», sz.) be a given data set. Consider the following min­
imization problem:
Find a sinusoid that best approximates the data, in the least­
squares sense. That is, find real constants A / 0, <t>, and u / 0
so that the function f given by

f(t) = A sin(wt 4- </>)

minimizes the sum of the squared errors between /(i,) and y,-:

N
SSE

i=l
N

= 52 (y< “ A sin(wti + </>)) .
«=i

a nonlinear
least-squares
problem

This problem differs from the least-squares problem considered
in Section 2.2, in that the parameters to be ‘adjusted’ (A, and
w) do not all appear linearly in the formula for the approximate
f. (This notion of linear dependence on a parameter is made
precise below.) Consequently, the resulting problem is called
nonlinear least-squares approximation, and is exceedingly more
difficult to solve, because it does not lend itself to exact solution
by matrix methods. Indeed, nonlinear least-squares problems
must generally be solved by iterative techniques. Nonlinear
least-squares approximation is the subject of this section.
First, a definition:

DEFINITION
linear dependence
on a parameter

Suppose f is a function that depends on time, a fixed parameter
6, and possibly other parameters. This dependence is denoted
by f = f(t,b,x), where x represents all other parameters.
The function f is said to be linear with respect to the parameter
b if and only if the function f has the form

f(t,b,x) = b-fa(t,x) + f2(t,x)

for functions fa and f2 that may depend on t and z, but not on
b.
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generalizing
the definition

EXAMPLE

when f depends
linearly on b,
so does 8Sas.EUO

EXAMPLE

This definition is generalized in the obvious way. For example,
a function f = f(t,bi,b2,x) is linear with respect to the parame­
ters bi and b2 if and only if f has the form

fat, bi, b2, x) = bi ■ fa(t, x) + b2 • fa(t, i) + fa (fa z)

for functions fa, fa and fa that may depend on t and x, but not
on bi and b2 .

The function fat,A,<j>,w) = Asin(wt + ^) is linear with respect to
the parameter A, but not linear with respect to or w .

If f depends linearly on a parameter 6, then also depends
linearly on b, as follows:

N
SSE = £(» - 6 • fa(th x) - faiti, z))2 ;

»=i
acc p fa

“ 6 • A (*<.«)  - Aft,*))  •

1=1
N N

= * • 122 (a (*•■  > ®))2 ffafa^fatti,1) •
« = 1 i=l

Similarly, if f depends linearly on parameters bit... ,bm, then
so do for all i = 1 m. Consequently, as seen in Sec­
tion 2.2, matrix methods can be used to find parameters that
make the partials equal to zero.
Unfortunately, when f does NOT depend linearly on a param­
eter b, the situation is considerably more difficult, as illustrated
next:

Let fat) = Asin(wt + ^), so that, in particular, f does not depend
linearly on u. In this case, differentiation of

N
SSE = 52 (w — Asin(wt,- + <£))2

i=l

with respect to w yields

N
9SdSuE = 12 2(y« “ sin(wif + <£)) (-At,- cos(wt,- + </>)) .

i=l

Even if A and <f> are held constant, the equation — 0 is not
easy to solve for u.
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a linearizing
technique

Since a linear dependence on parameters is desirable, it is rea­
sonable to try and replace the class of approximating functions,

/•={/! f(t) = Asin(wZ + A / 0, <£ G R, u / 0} (1)

with another class j-, that satisfies the following properties:
• 7 = 7, and
• The new class 7 involves functions that have more lin­

ear dependence on the approximating parameters than the
original class.

If it is possible to find such a class T-, then the process of
replacing 7 by 7 is called a linearizing technique.

EXAMPLE For example, the next lemma shows that the set

7 := {f 1 f(f) = CsinwZ + Dcosut, w / 0, C and D not both zero}

is equal to the set 7 given in (1). Thus, any function repre­
sentable in the form Asin(wZ + </>) is also representable in the
form CsinwZ + DcoswZ, and vice versa.
Both classes 7 and 7 involve three parameters: 7 involves A,
4> and u; and 7 involves C, D and u. However, a function
/(Z) = Csinut + Dcosut from 7 depends linearly on both C and
D, whereas f(t) = Asin(wZ+<£) only depends linearly on A. Thus,
the class 7 is more desirable.

LEMMA
a linearizing
transformation

Let 7 and 7 be classes of functions of one variable, defined by

7 = {f | f(t) = Asin(wZ + </>), A/Q, <f> G R, u 0} , and
7 = {f | /(Z) = CsinwZ + Dcosut, u / 0, C and D not both zero} .

Then, 7-7.

PROOF Let f E7. For all Z, A, <j> and w,

f(t) — A sin(wZ + </>)
= A(sin ut cos <f> + cos ut sin </>)

C D

= (A cos <f>) sin ut + (A sin 0) cos ut . (*)

Define C := A cos </> and D := A sin <t>.' Since f e 7, one has A / 0.
Therefore, the only way that both C and D can equal zero is if
cos </> = sin </> = 0, which is impossible. Thus, f g 7.
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Now, let / G 5", so that /(t) = CsinwZ + Dcoswt for u / 0, and
for numbers C and D that Eire not both zero. It may be useful
to refer to the flow chart below while reading the remainder of
the proof.

</> = tan 1 g = tan"1 g

If C = 0, then I> / 0. In this case,

C sin ut + D cos wt = D cos wt = D sin(wt + 77)z

Take A := D, and <f> = f to see that f G
Now, let C £ 0. If there exist constants X/0 and j> for which
C = Azos<j> and D = Asin<£, then A and <f> must satisfy certain
requirements, as follows:
Since C / 0, it follows that cos<£ / 0. Thus,

_t
O

|

D _ Asin<£
C A cos <f> = tan<£

There are an infinite number of choices for <j> that satisfy this
requirement. Choose <j> := tan-1 £, where tan-1 denotes the
arctangent function, defined by

y = tan-1x <=> (tany = £ and y G (“, 7^)) •
z z

Also note that

C2 + D2 = (A cos ^)2 + (A sin <j>)2 = A2 ,

so that A must equal either VC2 + D2 or -VC2 + D2 .
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formulas for
sin (tan-1 ^-)
and
cos (tan-1 ^-)

The table below gives the correct formulas for

cos (tan 1 and
G

sin (tan 1 ,

for all possible sign choices of C and D. In this table,

K := y/C2 + D2 .

D c sin (tan-1 cos (tan 1 ^-)

+ + D77
c
K

+ — D“K
C_
K

— + D77 C

— — D
~ K

C
~K

If C > 0, then take A := a/C2 + D2. Using (*),

j4sin(wt + </>') = y/C2 + D2 cos(tan

If C < 0, take A := -y/C2 + D2. Then,

j4sin(wt + <£) = — a/C2 + D2 cos (tan 1 sinwt
G

.________ ]j
— y/C2 + D2 sin (tan-1 —) cos ut

G_____ —/"t
= —y/C2 + D2 .--- = sinwt

y/C2 + D2
— y/C2 + D2 — cosut

y/C2 4- D2
— Csinut + Deosut .

lD\ ■ 4

—) smutG
+ y/C2 A Z>2 sin (tan-1 ^~) coswf

G_____ q
= y/C2 + D2 . =sinu>t7c2 + z>2

4-\/C2 + D2-. - = coswt
y/C2 + D2

— Csin ut + D cosut .

In both cases, it has been shown that f e T, |
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general
approach

Let h be a function from Rm into R, and let x = (xi,... ,xm)
be an element of Rm. If h has continuous first partials in a
neighborhood of x, then the function Vh : Rm —<■ Rm defined by

. / dh dh .j-(x

has the following property:
at x, the function h increases most rapidly in the direction
of the vector V/i(x) (the rate of change is then ||VA(x)||), and
decreases most rapidly in the direction of -V/i(x) (the rate of
change is then -||V/i(x)||).
The function V/i is called the gradient of h.

This theorem will be used to ‘adjust’ parameter(s) so that the
function SSE will decrease most rapidly.
• Let w be a current parameter value.
• Compute VSSE(w). One must move in the direction of

-VSSE(w) to decrease SSE most rapidly. Thus, let e be a
small positive number, and compute

VSSE'(w)
Wnew _ W 6 • ||VSS£(w)|| •

When ||VSSE'(w)|| is large, the function SSE is changing rapidly
at w; when ||VSSE(w)|| is small, the function SSE is changing
slowly at w.

The following iterative approach can be used to find a choice
of parameters C, D and w so that the function f(t) = C sin ut +
Dcoswt best approximates the data, in the least-squares sense.
Observe that, once a value of u is fixed, the remaining prob­
lem is just linear least-squares approximation, treated in Sec­
tion 2.2.
• Estimate a value of w, based perhaps on initial data anal­

ysis.
• Use the methods from Section 2.2 to find optimal param­

eters C and D corresponding to w.
• Compute the sum of squared errors, SSE(C,D,w), corre­

sponding to C, D and w .
• Try to decrease SSE by adjusting w, and repeating the

process.
One algorithm for ‘adjusting’ u is based on the following
result from multivariable calculus:

THEOREM
a differentiable
function h
changes
most rapidly
in the direction of
the gradient;
"Vh is
the gradient of h
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The MATLAB implementation given in this section allows the
user to choose the value of e. ‘Optimal’ values of e will depend
on both the function SSE, and the current value of w, as sug­
gested by the sketches below (where, for convenience, SSE is
a function of one variable only). These sketches also illustrate
how ‘bouncing’ can occur, and how w can converge to a non-
optimal minimum. In general, experience and experimentation
by the analyst will play a role in the success of this technique.

Far away from minimum;
large e will speed
process initially

‘bouncing’
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a general
nonlinear
least-squares
problem

The previous theorem is now applied to a general nonlinear
least-squares problem. MATLAB implementation, for a special
case of the situation discussed here, will follow.
Let ,fm be functions that depend on time, and on pa­
rameters c := (ci,... , cp). That is, /,• = /,■ (t, c) for i = 1,... m. The
dependence on any of the inputs may be nonlinear.
Define a function f that depends on time, the parameters c,
and parameters b = (blt... ,bm), via

/(t.c.b) = 6i/i(t,c) + ■•• + bmfm(t,c) .

Thus, f is linear with respect to the parameters in b, but not
in general with respect to the parameters in c.

Given a dataset {(ti,y,)},^i, let t = (ti tjv) andy = (yi,... ,yv).
The sum of the squared errors between /(t,-,c,b) and y, is

N
SS£ = £(y,-/(t,,ctb))2 ,

»=i

which has partials

for j = 1,... ,p. Note that

c,b) = 6ic) + ■ • • + bm.
OCj OCj uCj

Then, V5S£ = (^,...,^).

the algorithm The algorithm:
• Choose an initial value of (ci,..., cp).
• Use the methods in Section 2.2 to find corresponding op­

timal values of (6i,..., 6m).
• Adjust:

(ci,... cp)new — (cl> ■ • • > cp) e ’
VSSE

IIVSSEH •

The analyst may need to adjust e based on an analysis of
the values of SSE. If SSE is large, but decreasing slowly,
make e larger. If SSE is ‘bouncing’, make e smaller.

• Repeat with the new values in c.
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MATLAB IMPLEMENTATION
Nonlinear Least-Squares, Gradient Method

using
the function
noniin

The following MATLAB function uses the gradient method
discussed in this section to fit data with a sum of the form

m
f(t) = A + Bt + Ci sin u^t + Di cos Wit .

»=1

The fundamental period of sinw.t is Pi := ^7. To use the func­
tion, type
EE.f] = nonlin(P,D,epsil,tol);

required
inputs

The required inputs axe:
• P = [Pi • • • Pm] is a matrix containing the initial estimates for

the unknown periods. P may be a row or a column matrix.
• D is an N x2 matrix containing the data set {(<«•, y,)}-ii. The

time values are in the first column; the corresponding data
values are in the second column.

• epsil is used to control the search in parameter space. In­
deed,

(Pi,... ,Pm)new-(P1)... ,Pm) e||VSS£|| •

• tol is used to help determine when the algorithm stops.
The algorithm will stop when either 25 iterations have been
made, or when SSE < tol.

outputs from
the function

The function returns the following information:
• E is a matrix containing each iteration of ‘best’ parameters

and the associated error. Each row of E is of the form:

A B Pt Ci Di P2 C2 D2 Pm Cm Dm SSE

• 1 contains the values of the approximation to the data,
using the parameter values in the last row of the matrix
E, and using the time values in t. Then, the command
plot(t,y,’x’,t,f,’.’) can be used to compare the actual
data set with the approximate.
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function [E,f] = nonlin(P,D,epsil,tol)
% P=[P1 P2 ... PM] is an Mxl matrix containing the initial
% period estimates, where w = (2*pi)/P
% D (for .'data') is a two-column matrix, size N x 2;
% the first column contains the time values ti
% the second column contains the data values yi
% epsil is used to determine the movement in
% in parameter space: wnew - wold + epsil*(gradient/|gradient| )
% The algorithm stops if SSE < tol, or if 25 iterations have been completed
% (adjust this number where indicated below, if desired).
M = length(P);
t = D(:,l) ;
N = length(t);
y = DC,2) ;
w = 2*pi  ./ P;
% initialize matrices
% E=[A B Pl Cl Dl P2 C2 D2...SSE] holds the parameters and associated error
E = zeros(2,3*M+3) ;
% gradient will hold (partial of SSE with respect to w)
gradient = zeros(1,M);
% ngradient will hold (gradient)/(|gradient|), which has unit length
% approximate is of form:
% f(t) = A+Bt+(Cl)sin(wl)t + (Dl)cos(wl)t + ... + (CM)sin(wM)t + (DM)cos(wM)t
X = zeros(N,2*M+2) ;
X(:,l) - ones(t);
X(:,2) =• t;
% initially set SSE greater than tol so it loops through at least once
SSE - tol + 1;
i - 0;
% Change the number of iterations from 25 in the next line, if desired.
while ((SSE > tol) & (i < 25))
i = i+1;
% complete the X matrix with the appropriate w values
k-1;
for j = 1:2:2*M
X(:,j+2) - sin(w(k)*t) ;
X(:,j+3) ■ cos(w(k)*t);
k=k+l;

end
b =• (X'*X)  \ (X'*y);
f - X*b;
sse - (y - f)'*(y  - f);
% store the results in the matrix E
c = 1;
k - 1;
E(i,l) - b(l) ;
E(i,2) = b(2) ;
for j - 1:3:3*M
E(i,j+2) =■ P(c) ;
E(i,j+3) - b(k+2);
E(i,j+4) - b(k+3);
c » c+1;
k » k+2;

end
E(i,3*M+3)  = SSE;
% next, compute the gradient and move to a new w in parameter space
for k - 1:M
gradient(k)=sum(-2*(y-f ).*(b(2*k+l)*t.*cos(w(k)*t)-b(2*k+2)*t.*sin(w(k)*t) ));
end
ngradient - gradient ./ norm(gradient);
w - w - epsil*ngradient;
P = 2*pi  ./ w;
end
E - E(l:i,:);
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The following diary of an actual MATLAB session illustrates
the use of the function nonlin.

t = [0:.1:20]';y = l+.5*t  + sin((2*pi/5)*t)  - 2*cos ((2*pi/5)*t)  + 7*cos((2*pi/17)*t)
noise = 2*(rand(t)  - .5);
y = y+noise;
subplot(221)
plot(t,y) ----------------
P = [4 20];
D = [t y];
[E f] = nonlin(P,D,.01,1);

‘100 5 W 15 20

% repeat, using the parameters from the last line

A B Pl Ci Pl P2 c2 d2 SSE

6735 0.2179 4.0000 -0.1875 -0.1483 20.0000 -4.9345 6.1258 692.6973
9394 0.2727 3.9991 -0.1788 -0.1316 19.3834 -4.0371 6.5072 655.2642
2665 0.3230 3.9983 -0.1696 -0.1135 18.8036 -3.1435 6.7961 620.6948
6485 0.3691 3.9976 -0.1598 -0.0938 18.2574 -2.2567 6.9966 590.1082
0804 0.4117 3.9971 -0.1492 -0.0726 17.7420 -1.3802 7.1114 564.8433
5579 0.4509 3.9968 -0.1380 -0.0500 17.2548 -0.5180 7.1427 546.4859
0778 0.4873 3.9969 -0.1262 -0.0258 16.7936 0.3248 7.0921 536.8874
6390 0.5209 3.9988 -0.1154 0.0023 16.3576 1.1402 6.9618 538.1223
0788 0.4872 4.0010 -0.1304 -0.0173 16.7932 0.3247 7.0927 536.8176
6416 0.5206 4.0037 -0.1210 0.0118 16.3586 1.1374 6.9631 537.9642
0808 0.4870 4.0065 -0.1367 -0.0057 16.7932 0.3235 7.0937 536.6824
6466 0.5202 4.0106 -0.1295 0.0247 16.3614 1.1311 6.9656 537.6635
0845 0.4866 4.0143 -0.1466 0.0104 16.7940 0.3204 7.0953 536.4148
6561 0.5194 4.0201 -0.1429 0.0424 16.3678 1.1176 6.9700 537.0875
0910 0.4860 4.0253 -0.1625 0.0326 16.7962 0.3141 7.0980 535.8669
6737 0.5179 4.0335 -0.1645 0.0663 16.3808 1.0911 6.9781 535.9781
1005 0.4852 4.0411 -0.1893 0.0633 16.7995 0.3051 7.1023 534.6910
7048 0.5154 4.0525 -0.2005 0.0983 16.4052 1.0425 6.9921 533.8175
1085 0.4844 4.0641 -0.2363 0.1050 16.7983 0.3037 7.1079 532.0192
7583 0.5112 4.0801 -0.2638 0.1394 16.4483 0.9584 7.0153 529.4687
0964 0.4853 4.0980 -0.3210 0.1565 16.7733 0.3465 7.1128 525.8067
8531 0.5039 4.1203 -0.3773 0.1839 16.5272 0.8073 7.0543 520.3607
0528 0.4887 4.1449 -0.4638 0.1994 16.7134 0.4569 7.1149 512.9167
9972 0.4932 4-I722 -0.5552 0.2051 16,6501 0.5768 7.1082 503.3758
0633 0.4884 $4.1998) -0.6593 0.1956 ■^6.7057) 0.4751 7.1325 491.7921

[E f] • nonlin([4.1998 16.7057],D,.01,1);
E
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E -

1.0633 0.4884 4.1998 -0.65921.1066 0.4855 4.2280 -0.76701.1579 0.4821 4.2565 -0.87661.2139 0.4784 4.2853 -0.98441.2742 0.4745 4.3145 -1.08701.3378 0.4704 4.3441 -1.18031.4041 0.4662 4.3740 -1.26081.4722 0.4620 4.4043 -1.32471.5408 0.4577 4.4350 -1.36891.6090 0.4535 4.4661 -1.39041.6754 0.4494 4.4977 -1.38721.7385 0.4456 4.5296 -1.35761.7966 0.4421 4.5621 -1.30081.8478 0.4392 4.5951 -1.21671.8899 0.4368 4.6286 -1.10591.9202 0.4353 4.6627 -0.96991.9356 0.4347 4.6973 -0.81061.9321 0.4355 4.7327 -0.6309
1.9053 0.4378 4.7686 -0.43441.8498 0.4422 4.8050 -0.22531.7602 0.4488 4.8419 -0.00901.6331 0.4581 4.8788 0.20861.4712 0.4698 4.9157 0.42161.2887 0.4828 4.9524 0.62621.1127 0.4953 0.9896} 0.8225

0.1956 16.7057 0.4750 7.1325 491.8000.1685 16.7401 0.4146 7.1509 478.1700.1226 16.7834 0.3391 7.1707 462.4820.0570 16.8329 0.2536 7.1907 444.774-0.0289 16.8882 0.1588 7.2103 425.145-0.1347 16.9491 0.0555 7.2288 403.749-0.2592 17.0150 -0.0554 7.2454 380.799-0.4009 17.0853 -0.1727 7.2596 356.561-0.5571 17.1593 -0.2951 7.2706 331.345-0.7248 17.2362 -0.4208 7.2779 305.498-0.9004 17.3148 -0.5479 7.2809 279.390-1.0800 17.3938 -0.6741 7.2794 253.409-1.2593 17.4717 -0.7965 7.2731 227.943-1.4339 17.5467 -0.9121 7.2621 203.376-1.5995 17.6163 -1.0169 7.2467 180.073-1.7517 17.6777 -1.1064 7.2273 158.370-1.8866 17.7275 -1.1751 7.2048 138.567-2.0002 17.7612 -1.2163 7.1801 120.910
-2.0893 17.7735 -1.2217 7.1545 105.581
-2.1510 17.7581 -1.1816 7.1291 92.687
-2.1836 17.7083 -1.0854 7.1046 82.244
-2.1866 17.6190 -0.9247 7.0806 74.192
-2.1616 17.4907 -0.7003 7.0547 68.425
-2.1124 17.3362 -0.4329 7.0236 64.841
-2.0426 0.7.1'820 -0.1681 6.9862 63.348

[E f] =• nonlin([4.9896 17.1824],D,.01,1);
E

E =
1.1127 0.4953 4.9896 0.8226 -2.0426 17.1824 -0.1682 6.9862 63.348
0.8913 0.5112 5.0253 1.0004 -1.9545 16.9748 0.1898 6.9353 63.919
1.2988 0.4813 5.0047 0.8931 -2.0277 17.3774 -0.5068 6.9887 64.625
0.8716 0.5133 4.9910

••«

0.8359 -2.0207 16.9376
•
•
•

0.2607 6.9496 64.493

% 'Bouncing' has occurred.
E(25,:)

Go back and decrease epsilon.

ans =
Columns 1 through 7

1.3020 0.4810

Columns 8 through 9

5.004 0.8898 -2.0293 ,7.380 -0.5117

6.9892 64.6252

[E f] = nonlin([5.004 17.3803],D,.001,1),
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E

E =
1.3021 0.4810 5.0040 0.8896 -2.0294 17.3803 -0.5118 6.9892 64.6239
1.2576 0.4844 5.0027 0.8840 -2.0289 17.3352 -0.4340 6.9885 64.1657
1.2134 0.4877 5.0013 0.8785 -2.0283 17.2901 -0.3562 6.9870 63.8020
1.1694 0.4909 5.0001 0.8731 -2.0275 17.2452 -0.2784 6.9848 63.5344
1.1256 0.4942 4.9988 0.8680 -2.0266 17.2004 -0.2004 6.9818 63.3646
1.0817 0.4975 4.9977 0.8634 -2.0255 17.1554 -0.1221 6.9780 63.2940
1.0360 0.5009 4.9974 0.8630 -2.0225 17.1088 -0.0408 6.9728 63.3211
1.0786 0.4977 4.9987 0.8686 -2.0233 17.1528 -0.1176 6.9771 63.2940
1.0358 0.5009 4.9974 0.8632 -2.0224 17.1087 -0.0405 6.9727 63.3211
1.0785 0.4977 4.9987 0.8688 -2.0232 17.1527 -0.1174 6.9770 63.29401.0357 0.5009 4.9974 0.8632 -2.0224 17.1087 -0.0404 6.9727 63.3211
1.0784 0.4977 4.9987 0.8688 -2.0232 17.1527 -0.1174 6.9770 63.29401.0357 0.5009 4.9974 0.8632 -2.0224 17.1086 -0.0404 6.9727 63.32111.0784 0.4977 4.9987 0.8688 -2.0232 17.1527 -0.1174 6.9770 63.29401.0357 0.5009 4.9974 0.8632 -2.0224 17.1086 -0.0404 6.9727 63.32111.0784 0.4977 4.9987 0.8688 -2.0232 17.1527 -0.1174 6.9770 63.29401.0357 0.5009 4.9974 0.8632 -2.0224 17.1086 -0.0404 6.9727 63.32111.0784 0.4977 4.9987 0.8688 -2.0232 17.1527 -0.1174 6.9770 63.29401.0357 0.5009 4.9974 0.8632 -2.0224 17.1086 -0.0404 6.9727 63.32111.0784 0.4977 4.9987 0.8688 -2.0232 17.1527 -0.1174 6.9770 63.29401.0357 0.5009 4.9974 0.8632 -2.0224 17.1086 -0.0404 6.9727 63.32111.0784 0.4977 4.9987 0.8688 -2.0232 17.1527 -0.1174 6.9770 63.29401.0357 0.5009 4.9974 0.8632 -2.0224 17.1086 -0.0404 6.9727 63.32111.0784 0.4977 4.9987 0.8688 -2.0232 17.1527 -0.1174 6.9770 63.29401.0357 0.5009 4.9974 0.8632 -2.0224 17.1086 -0.0404 6.9727 63.3211

plot(t,y,'x',t,f,'.')

Beautiful fit!
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A Genetic Algorithm

What is a
genetic
algorithm?

A genetic algorithm is a search technique based on the me­
chanics of natural selection and genetics. Genetic algorithms
may be used whenever there is a real-valued function f that is
to be maximized over a finite set of parameters, S:

max/(p) .pto

In practice, an infinite parameter space is ‘coded’ to obtain the
finite set S.
Genetic algorithms use random choice as a tool to guide the
search through the set S.

NOTATION
objective
function;
fitness;
parameter set;
strings

In the context of genetic algorithms, the function f is called
the objective function, and is said to measure the fitness of
elements in S. The set S is called the parameter set, and its
elements are called strings. It will be seen that the elements of
S take the form (pi,p2,... ,Pm)-

advantages
of genetic
algorithms
over other
optimization
methods

One advantage of genetic algorithms over other optimization
methods is that only the objective function f and set S are
needed for implementation. In particular, there are no continu­
ity or differentiability requirements on the objective function.
Also, genetic algorithms work from a wide selection of points
simultaneously (instead of a single point), malting it far less
likely to hit a ‘wrong’ optimal point.
Genetic algorithms can be particularly useful for determining
a ‘starting point’ for the gradient method, when an analyst has
no natural candidate.

basic steps
in a
genetic algorithm:
Initialization,
Reproduction,
Crossover,
Mutation

Here are the basic steps in a simple genetic algorithm:
• (Initialization) An initial population is randomly selected

from S. The objective function f is used to determine the
fitness of each choice from the initial population.

• (Reproduction) A new population is produced, based on
the fitness of elements in the original population. Strings
with a high level of ‘fitness’ are more likely to appear in
the new population.
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• (Crossover) This new population is adjusted, by randomly
‘matching up and mixing’ the strings. This information
exchange between the ‘fittest’ strings is hoped to produce
‘offspring’ with a fitness greater than their ‘parents’.

• (Mutation) Mutation is the occasional random alteration
of a particular value in a parameter string. In practice,
mutation rates are on the order of one alteration per thou­
sand position changes [Gold, p.14]. In the MATLAB im­
plementation discussed in this section, the mutation rate
is zero.

generation • The steps above are repeated as necessary. Each new pop­
ulation, formed by reproduction, crossover and (possibly)
mutation, is called a generation.

revisiting an
earlier problem

An earlier problem is revisited:

PROBLEM
(P)

Given a data set {(/,-, 2/»)}£Li, find parameters A, B, Ci, Di, and
Pi := — (i = 1,... ,m) so that the function

m
/(t) = A + Bt + / J Ci sin Wit + Di cos

i=l

minimizes the sum of the squared errors between /(*»•)  and the
data values y,:

N
minS(/(<«)-y»)2 •

1=1

a genetic
algorithm
will be used

A genetic algorithm will be used to search among potential
choices for the periods of the sinusoids. For each string (Pi,... , Pm
in the parameter set, linear least-squares techniques (Section 2.2)
will be used to find the corresponding optimal choices for A,
B, Ci and Di (: = 1,... ,m), which are then used to find the
mean-square error associated with that string:

N
error(Pb...,Pm) = (/(<,) - y.)2 .

i=i

The objective function will be defined so that strings with min­
imum error have maximum fitness, and strings with maximum
error have minimum fitness.
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The reader is now guided through an implementation of a ge­
netic algorithm, using MATLAB. A wealth of additional in­
formation can be found in [Gold]. It may be helpful to look
ahead to the EXAMPLE while reading through the following
discussion of the function genetic.

MATLAB
FUNCTION
genetic

The following MATLAB function uses a genetic algorithm to
search for periods (Pi,... , Pm) that approximate a solution to
(P).
To use the function, type:
best = genetic(D,a,b,dT,popsize,strlngth,  mungen);

Important sections of code are analyzed. The entire code is
given at the end of this section.

REQUIRED
INPUTS
D

a,b,dT

The required inputs are:
• D is an N x2 matrix containing the data set {(*,,2/1)}^!.  The

first column of D must contain the time values. The second
column contains the corresponding data values.

• a.b.dT Let a and b be positive real numbers with a < b, and
let AT > 0. The MATLAB variables a, b and dT correspond,
respectively, to a, b and AT.
Periods are chosen from the interval [a, b], with increment
AT, as follows. Let k be the greatest nonnegative integer
for which a + £AT < b. Then, every number in the set
S := {a, a + AT, a + 2AT,... , a + 1-AT} is in the interval [a, 6].

a 4- AT£—*—•—
a a + 2AT

6—•—*-
a + k&T a + (k + l)AT

Define

5:= {(Pi,... ,Pi,... ,Pm) | Pi 6 5, l<i<m} .

The initial population is chosen from this parameter set S.

• popsize is a positive even integer, that gives the size of the
population chosen from S. It is assumed that the popula­
tion size is constant over all generations.

popsize
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(generation #) (best string of periods) (error) A B Ci D\ C2 D2 ••• Cm Dm

strlngth • strlngth gives the length of each string in the parameter
set S. For example, if each string is of the form (Pi,... , Pm),
then strlngth = m.

numgen • numgen gives the number of generations of the genetic al­
gorithm to be implemented.

OUTPUT
FROM THE
FUNCTION

The function scrolls information about each generation as it is
running. This information is described later on.
The function returns a matrix best that contains the best string
of periods, and related information, from each generation of the
genetic algorithm. If two strings have equal fitness, then the
first such string is returned in best.
Each row of best is of the form:

INITIAL- (INITIALIZATION) The genetic algorithm begins with a ran-
IZATION dom selection of the initial population from the parameter set

S.
Each line below is numbered for easy reference in the explana­
tions that follow.
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)

index = [1:popsize]’;
ran = rand(popsize,strlngth);
oldpop = (b-a)*ran  + a;
oldpop = dT*round((l/dT)*(oldpop-a))+a;
oldpop = chkfdup(oldpop,a,b,dT);
error = linlstsqr(oldpop,S,t,y);
averror = sum(error) / popsize;
[minerror.besti] = min(error);
maxerror = max(error);
M = minerror + maxerror;
fitness = M - error;
sumfit = sum(fitness);
pselect = fitness / sumfit;
expent = popsize ♦ pselect;

an explanation (1)
of each line

The column vector index is used to number the strings
in each population, for easy reference.

(2) The command rand(popsize,strlngth) creates a matrix
of size popsize x strlngth with entries randomly chosen
(using a uniform distribution) from the interval [0,1].
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(3) The entries in ran are mapped to entries in the interval
[a, 6], via the mapping given below. The resulting matrix
is named oidpop, for ‘old population’.

Each entry in oidpop must be replaced by a best ap­
proximation from the allowable parameter set, S. Let
e denote an entry in oidpop. A nonnegative integer k is
sought, so that e is closest to a + kAT. Since AT > 0, one
has

|e-(a + tAT)| =

= AT
e — a
AT

-k

Thus, it suffices to choose an integer k that is closest
to This is accomplished for each entry of oidpop
simultaneously, by use of the round command:
k = round((l/dT)*(oldpop  - a))

The desired element in S is then AT - k + a.

 a + AT€—•—1—‘
a a+2AT

a 4- A: AT

e
i
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chkfdup

linlstsqr

averror

minerror

maxerror

(5) The periods in each string (Pi,..., Pm) must be distinct.
Otherwise, when linear least-squares techniques are ap­
plied, the matrix X will have duplicate columns, and
hence be singular (Section 2.2). The MATLAB func­
tion chkfdup checks each string for duplicate periods.
Entries are (randomly) adjusted by ±AT to correct any
duplicate values. The code for the function chkfdup is
included at the end of this section.

(6) The function linlstaqr finds the parameters A, B, Ci and
D{ (i = 1,... ,m) corresponding to each string (Pi,...,Pm)
in oldpop, and computes the associated mean-square er­
ror. These errors are returned in the matrix error. The
code for the function linlstsqr is included at the end
of this section.

(7) The average error (averror) for the initial population is
computed by summing the individual errors, and divid­
ing by the number of strings.

(8) The least error, over all the strings, is returned as min­
error. The row number of the corresponding least-error
string is returned in besti. If more than one row has the
same least error, then the first such row is returned.

(9) The greatest error, over all the strings, is returned as
maxerror.

(lo­
ll)

The fitness of each string is computed via the linear
function below. Observe that minimum error is mapped
to maximum fitness, and maximum error is mapped to
minimum fitness.

a y = fitness

I i
minerror maxerror

t = error
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EXAMPLE

(12) The ‘population fitness’ sumfit is the sum of the fitnesses
of each string in the population.

(13) The probability that a given string will be selected for
the next generation is given by its fitness, divided by
the population fitness.

(14) The (theoretical) expected number of each string in the
subsequent population is found by multiplying the prob­
ability of selection by the population size.

Let D be the data set formed by these commands:
t = EO:.1:201’;
y=l+.S*t+sin(2*pi*t/5)-2*cos(2*pi*t/5)+7*cos(2*pi*t/ 17);
noise = 2*(rand(t)  - .5);
y = y + noise;
D = [t y];

The reader will recognize this data set from the previous MAT­
LAB example of the gradient method. The sinusoids have pe­
riods 5 and 17.

Let a = 1, b = 20, dT = 0.5, popsize = 10, strlngth = 2, and
numgen = 3. An application of
best = genetic(D,a,b,dT,popsize,strlngth,numgen)

(modified to print out more information than usual), yielded
the following initial population, associated mean-square errors,
fitness, probability of selection, and expected count in the next
population:

index Pi P2 error fitness pselect expent
1 12.5 14.0 496.1 4535.2 0.1355 1.3545
2 4.5 16.0 341.5 4689.8 0.1401 1.4007
3 16.5 14.0 532.6 4498.7 0.1344 1.3436
4 4.0 15.5 588.3 4443.1 0.1327 1.3270
5 20.0 13.5 553.5 4477.9 0.1337 1.3374
6 6.0 13.0 1181.0 3850.4 0.1150 1.1500
7 5.5 2.0 4689.8 341.5 0.0102 0.1020
8 3.0 12.5 2199.8 2831.6 0.0846 0.8457
9 5.0 5.5 4592.9 438.5 0.0131 0.1310
10 13.0 7.0 1655.5 3375.9 0.1008 1.0083

Observe that the numbers Pi and P2 are randomly distributed
between 1 and 20, with increment 0.5. The string with the least
error is [4.5 16.0]; not surprisingly, since these periods are close
to the actual periods 5 and 17.
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information
scrolled
while genetic
is running

REPRO­
DUCTION

fit(l)

o'

sumfit = 4535.2 + 4689.8 + • • • + 3375.9 = 33482.6 .

fit(7) = 341.5
4635.2

num?it = 33482.6

(REPRODUCTION) The initial population is reproduced, based
on the fitness of its strings.
The following reproduction scheme is adapted from [Gold, p. 63].
The interval [0, sumfit] is partitioned, according to the fitness
of each string. Let fit(i) denote the fitness of string i, for
i = 1,... ,popsize. The sketch below shows the partitioning of
[0, sumf it] = [0,33482.6] corresponding to the initial population in
the previous example:

As written, the function genetic does not scroll all the infor­
mation given in the previous example. It scrolls only the infor­
mation:
E = [index oldpop]
error
averror
while it is running. This information can be captured by typing
diary before running genetic.
After producing the initial population and statistics, reproduc­
tion takes place.

Notice that most of the ‘high-fitness’ strings seem to have a
period close to 17. This is because the amplitude of the period-
17 sinusoid in the ‘known unknown’ is 7, whereas the amplitude
of the period-5 sinusoid is only yi2 + (-2)2 = y/5. In general,
periods corresponding to larger amplitude sinusoids will have
a greater influence on the string fitness.

10

Observe that small error corresponds to high fitness, and strings
with high fitness have a greater probability of selection (pse-
lect) and expected count (expent) in the next generation.
The sum of the fitnesses for this first generation is

The average error for this initial population is

496.1 + 341.5 +•••+ 1655.5 1COO ,averror =-------------- —-------------- = 1683.1 .

fit(2) = 4689.8
fit(8) = 2831.6
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With this partition in hand, a number is selected randomly
(using a uniform distribution) from the interval [0, sunlit]. If
the number lands in the subinterval corresponding to string »,
then a copy of string i is placed in the next population. This
process is repeated popsizs times to complete reproduction.

The following MATLAB code implements the ideas just dis­
cussed:
'/. initialize ‘newpop’
newpop = zeros(oldpop);
for i = 1:popsize
partsum = 0;
j = 0;

ran = rand(l)*sumfit;
while ((partsum < ran) k (j <= popsize))

j = j+i;
partsum = partsum + fitness(j);

end
newpop(i,:) = oldpop(j,:);

end

EXAMPLE
(continued)

Shown below is the initial population, oldpop, and the repro­
duced population, newpop. Also shown is the expected count,
expent, of each string in oldpop, and the actual count, as ob­
served from newpop:

oldpop newpop

expent actualcount
12.5 14.0 6.0 13.0 1.3545 1
4.5 16.0 12.5 14.0 1.4007 2
16.5 14.0 6.0 13.0 1.3436 1
4.0 15.5 4.0 15.5 1.3270 1
20.0 13.5 20.0 13.5 1.3374 2
6.0 13.0 20.0 13.5 1.1500 3
5.5 2.0 16.5 14.0 0.1020 0
3.0 12.5 6.0 13.0 0.8457 0
5.0 5.5 4.5 16.0 0.1310 0
13.0 7.0 4.5 16.0 1.0083 0

CROSSOVER (CROSSOVER) The final step in this simple genetic algorithm
is crossover, where the strings in newpop are ‘matched up and
mixed’ to try and achieve an optimal string, as follows:
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The first string in newpop is ‘mated’, at random, with another
(different index) string from newpop. Then, a ‘crossover site’
is chosen at random from the set {1,2,... , (etrlngth- 1)}. The
information to the right of this ‘crossover site’ is swapped, as
illustrated next:

string = (a!, 02,03,04,05)
I £ SWAP

mate = (61,62J63,64,65)
crossover site = 2 I

new string = (01,02,63,64,65)
new mate = (61,62,03,04,05) .

Once mated and swapped, the first string’s (adjusted) mate is
placed in row (2) of the new population. The procedure is then
repeated with the remaining strings.

randomly
selecting
an integer
between
a and 6

In order to implement crossover, it is necessary to have a way
to randomly select an integer between prescribed bounds. The
following MATLAB function accomplishes this:

MATLAB
FUNCTION
selint

Let j and k be integers, with j < k. The command
i = selint(j.k)

returns an integer i selected randomly from the interval [j,k].
function i = selint(j,k)
i = floor(rand(l)*(k-j+l)+j) ;
if i > k
i = k;
end

Recall that rand(l) returns a number selected randomly from
[0,1], using a uniform distribution. Also recall that floor(x)
returns the greatest integer less than or equal to x.
The graph below illustrates how the integer between j and k is
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EXAMPLE
(continued)

diary of
an actual
MATLAB
session

Shown below is neopop before crossover, and after crossover.
The arrows indicate the strings that were mated. Observe that
when strlngth = 2, the crossover site is always 1.

before crossover after crossover

*6.0 13.0 '6.0 13.5
12.5 14.0 K 20.0 13.0

*6.0 13.0 \ 6.0 16.0
4.0 15.5k ) 4.5 13.0

*20.0 13.5 ) 1 20.0 15.5
20.0 13.5k 4.0 13.5
16.5 14.0 kJ' 16.5 13.0
6.0 13.0 J / 6.0 14.0

^4.5 16.0 J 12.5 16.0
4.5 16.0^ 4.5 14.0

Since it is possible to have duplicate values after crossover,
newpop is checked for duplicates before continuing with the al­
gorithm.
The average error in this reproduced, crossed-over population
is 792.2, as compared to 1683.1 for the old population. Thus,
the ‘fitness’ of the overall population has indeed improved!

The following diary of an actual MATLAB session begins by
constructing a ‘known unknown’ consisting of sinusoids with
periods 5, 33 and 87, and with close amplitudes. The search
for periods is done on the interval [1,100] with increment 1. A
population size of 30 is used. Five generations are computed.
By the fifth generation, components with periods 5, 35 and 87
were ‘found’ with an associated error of only « 140. What is the
probability that this good a result would have been obtained
by random choice alone?
The parameter space has (100)3 elements, since there are 100
choices for periods in the interval [1,100] with interval 1. Each
generation uses 30 points in this space, so 5 generations yield
5 • 30 = 150 points in parameter space.

Consider a ‘box’ around the actual solution point (5,33,87),
where each coordinate lies within 2 of the actual solution point:
{3,4,5,6,7} x {31,32,33,34,35} x {85,86,87,88,89}. There are 53 = 125
such points. By merely randomly choosing points in space, the
probability of hitting a point in this ‘box’ on a single draw is
^ = 0.000!25.
On N draws, what is the probability of hitting a point within
this box?
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P [(point in box on draw #1) OR (point in box on draw #2)
OR • • • OR (point in box on draw #N)]

= 1 - P(point is NOT in box on all N draws)
= 1 - (1 - .000125)"
« 0.0186 , when N = 150.

an illustration of
the power of the
genetic algorithm

Thus, the probability of hitting a point in the box on 150 draws,
by random search alone, is less than 2% ! This example illus­
trates the power of the genetic algorithm.
It is again noted that if one sinusoid has an amplitude consid­
erably larger than others in the sum, then that sinusoid gets
‘favored’ in the search process.
The summary of the ‘best’ choices from each generation, to­
gether with the first generation, are shown.

t = [i:ioo]';
y =• 5 + .l*t  + 3.9*cos ((2*pi/5)*t)  - 4.1*sin((2*pi/33)*t) ;
y = y + 2.3*cos ((2*pi/87)*t)  - 3.3*sin((2*pi/87)*t) ;
noise = 3*(rand(t)  - .5);
y = y + noise;
D = [t y];
best = genetic(D,l,100,l,30,3,5)

best =■
Columns 1 through 7

generation # Pl P2 P3 error A B
1.0000 52.0000 25.0000 5.0000 721.3155 -0.4123 0.2061
2.0000 40.0000 43.0000 5.0000 754.4211 0.9280 0.1775
3.0000 33.0000 47.0000 5.0000 422.0458 1.3175 0.1721
4.0000 33.0000 19.0000 5.0000 531.5720 2.0746 0.1570
5.0000 87.0000 35.0000 5.0000 140.4562 5.0390 0.0964

Columns 8 through 13

Ci Pl
2.4387 0.2409
3.2776 -1.6336
2.8692 -0.4977
3.2706 -0.4404
3.5699 2.3719

c2 P2
1.1601 0.0237

-2.0687 -1.9841
1.5142 -0.7472
0.2535 -0.1147

-3.3266 -2.3252

c3 d3
0.0507 3.7751
0.0880 3.7534
0.0310 3.7887

-0.0036 3.8149
-0.0883 3.8785



198
E -

1 13 53 34
2 53 67 803
4

17
52

87
25

64
5 FIRST GENERATION

5 11 71 56 84 27 167 37 39 77
8 43 9 7
9 33 47 52

10 72 24 93
11 58 80 23
12 87 50 21
13 76 1 10
14 84 27 70
15 70 67 71
16 40 43 50
17 94 19 27
18 61 96 71
19 37 14 38
20 54 80 21
21 46 95 24
22 41 18 44
23 25 61 47
24 9 7 86
25 43 35 98
26 48 30 45
27 30 51 4
28 11 83 53
29 22 84 4
30 80 73 76

bfitgen The function bfitgen (‘best fit from the genetic algorithm’) is
convenient for plotting the best approximation obtained from
an application of the genetic algorithm,
G = genetic(D,a,b,dT,popsize,strlgnth,numgen);
To use the function bfitgen, type:
[yb,rowofG,per,coef] = bfitgen(t.G);

INPUTS The required inputs are:
• the matrix G from an application of the genetic algorithm;
• a column vector t used to compute the data values of the

best approximation. Often, one uses t = D(:,l).

OUTPUTS • The column vector yb contains the values of the best ap­
proximation. To plot this best approximation, type either:
plot(t,yb) or plot(t,yb,’x’) .

• The optional outputs rowof G, per, and coef contain, respec­
tively, the generation number in which the best approxi­
mation was obtained, the periods Pl • •• Pm of the best ap­
proximation, and the corresponding coefficients A B ci Di
• • • Cm Dm of the best approximation.
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the programs The code for genetic and the necessary auxiliary functions is
given next:

% copyright 1993 Carol J.V. Fisher
function best =■ genetic(D,a,b,dT,popsize,strlngth,numgen)
% D is the data set:
% the first column contains the time values
% the second column contains the corresponding data values
% a,b,dT: the (unknown) periods are chosen from the interval [a,b],
% with positive increment dT;
% 'popsize' is a positive even integer, giving the (constant) population size
% 'strlngth' is a positive integer, giving the string length;
% that is, the number of periods used for approximation
% 'numgen' is a positive integer, giving the maximum number of generations
t = D(:,l);
N = length(t);
Y = D(:,2);
% gen contains the generation number
gen =0;
best = zeros(numgen,4+3*strlngth) ;
%
% INITIALIZATION: select the initial population
index = [l:popsize]';
% Randomly choose the initial population of strings
ran = rand(popsize,strlngth);
% oldpop is the 'old' population; before reproduction and crossover
% This command maps the numbers in [0,1] to numbers in [a,b]
oldpop = (b-a)*ran  + a;
% discretize oldpop; let 'n' denote an element of oldpop
% Want integer k such that n is closest to a + kdT;
% Equivalently, (n-a)/dT is closest to k.
oldpop = dT*round((1/dT)*(oldpop-a)  )+a;
% check 'oldpop' for duplicate period values;
* if so, change the duplicate values as little as possible
oldpop = chkfdup(oldpop,a,b,dT);
%
while gen < numgen

% find the corresponding parameters A,B,Ci and Di, and
% compute the mean-square error corresponding to the strings in oldpop
error = linlstsqr(oldpop,N,t,y);
% compute the fitness; note that small error gives large fitness
% Here, min(error) is mapped to max(fitness), and max(error) is mapped
% to min(fitness). The index of the 'best' string is stored in 'besti'
[minerror,besti] = min(error);
maxerror = max(error);
M = minerror + maxerror;
fitness - M - error;
% STATISTICS:
sumfit " sum(fitness);
averror — sum(error) / popsize;
pselect - fitness / sumfit;
expent ■ popsize * pselect;

% print out the results of each generation
E = [index oldpop]

. error
averror
% start a new generation
gen = gen+1; ... . .% Find the parameters corresponding to the best in this generation
[besterror,bestpar] = linlstsqr(oldpop(besti,:),N,t,y);
% The elements of the matrix 'best' are of the form:
% (generation #) (string of periods) (mean-square error) A B Cl DI ...



200

best(gen,:) - [gen oldpop(besti,:) besterror bestpar'];
%
% REPRODUCTION
% initialize 'newpop'
newpop - zeros(oldpop);
% (based on [Gold, p. 63])
% A fitness value is randomly chosen from [0,sumfit]. This interval
% is partitioned according to each string's fitness, and an entry is
% selected accordingly (see diagram at right).
for i = 1:popsize
partsum = 0;
j = 0;
ran = rand(l)*sumfit;
while ((partsum < ran) & (j <= popsize))

j = j+1;
partsum = partsum + fitness(j);

end
newpop(i,:) = oldpop(j,:);

end
%
% CROSSOVER
for j = 1:2:(popsize-1)
% if strlngth = 1 , then there is no crossover

if strlngth==l
break

end
mateindex = selint(j+1,popsize);
xsite = selint(l,(strlngth-1));
ind = (xsite+1):strlngth;
temp - newpop(j,:);
newpop(j,ind) = newpop(mateindex,ind);
newpop(mateindex,ind) = temp(ind);

% switch rows so that 'mates' are together at beginning of matrix
temp = newpop(j+1,:);
newpop(j+1,:) = newpop(mateindex,:);
newpop(mateindex,:) = temp;

end
% check the new population for duplicates
newpop =• chkfdup(newpop,a,b,dT);
oldpop = newpop;

end

tThis computes the function of 'best fit' from the genetic algorithm
function [yb,rowofG,per,coef] = bfitgen(t,G)
%First, find the entry with the least mean-square error
[m,n] - size(G);
% Let P be the number of periods being sought
% The number of columns of G is 1+P+1+2+2P ” 3P+4
P - (n-4)/3;
[minerror,rowofG] - min(G(:,(P+2)));
G =■ G(rowofG,:);
per - G(2:(1+P));
coef - G(P+3:n);
yb = coef(l) + t*coef(2);
for j - 1:P
yb ■ yb + coef(2*j+l)*sin(2*pi*t/per(j) ) + coef(2*j+2)*cos(2*pi*t/per(j) );

end
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% copyright 1993 Carol J.V. Fisher
function i = selint(j,k)
% this program returns an INTEGER selected randomly (uniform distribution)
% between integers 'j' and 'k', where j < k
i = floor(rand(l)*(k-j+l)+j) ;
if i > k

i = k;
end

% copyright 1993 Carol J.V. Fisher
function [error,bestpar] = linlstsqr(oldpop,N,t,y)
[popsize,strlngth] = size(oldpop);
% This computes the error corresponding to each string in oldpop
w - 2*pi  ./ oldpop;
% Initialize the error matrix
error = zeros(popsize,1);
% find the X matrix necessary for linear least squares
X = zeros(N,2*strlngth+2) ;
X(:,1) = ones(t);
X(:,2) = t;
for i = 1:popsize
k = 1;
for j = l:2:2*strlngth
X(:,j+2) = sin(w(i,k)*t) ;
X(:,j+3) = cos(w(i,k)*t) ;
k = k+1;

end
if rcond(X'*X)  > le-15
b - (X'*X)  \ (X'*y);
else

[M,F] =» dscorth(t,X,(2*strlngth+2) );
b =■ (F'*F)  \ (F'*y) ;
b = M'*b;

end
f - X*b;
error(i) - (y-f)'* (y-f);

end
% The best parameters are optionally returned when only one
% row is being processed.
bestpar » b;
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% copyright 1993 Carol J.V. Fisher
function nodup - chkfdup(oldpop,a,b,dT)
[popsize,strlngth] » size(oldpop);
nodup = oldpop;
i = 1;
% Sort each row in increasing order, put in z . Thus, any identical
% entries will ba adjacent in z .
% 'count' will keep track of the number of times a string is checked
% for duplicate entries; if count > 10, go on to next string
count = 0;
while i <=• popsize

[z,k] =*  sort(nodup(i,:));
flag =0;
j - i;
while (j < strlngth) & (flag=0)

if z(j) — z(j+l)
% If a duplicate entry is found, set 'flag' to 1. Adjust the second
% entry by (plus or minus)dT (randomly chosen) and recheck the
% string for other duplicates

flag = 1;
R = rand;

if (((R >= .5) & (nodup(i,k(j+1)) <=■ (b-dT))) | (nodup(i,k(j+1)) <= (a+dT)))
sgn = 1;

else
sgn “ -1;

end
nodup(i,k(j+l)) - nodup(i,k(j+l)) + sgn*dT;

end
j - j+1;
end
% If a duplicate was found and count <- 10 , recheck the string
if flag ~ 1

count - count+1;
i = i - 1;

end
if (count > 10)
count - 0;
i => i + 1;

end
i - i+1;

end
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missing values
in a data set

What is
a ‘spline’?

polynomials
can exhibit
large oscillations

Occasionally, an analyst may choose to ‘fill in’ (interpolate)
some missing values in a data set—perhaps to achieve a uni­
form time list, or to replace a data point that is clearly in error.
The validity of such replacement of actual data with artificial
data should always be carefully considered. When it is decided
that such a replacement should take place, then splines are a
useful tool for determining the replacement data value(s).

In mathematical literature, a spline is a function formed by
piecing together other functions, achieving some degree of smooth­
ness (differentiability) in the final ‘pieced together’ curve. Splines
have applications in graphics, where, for example, a set of
points must be connected with a smooth curve or surface [Prenter,
Chap. 5]. Splines also have applications in the numerical so­
lutions of partial and differential equations [Prenter, Chaps.
7&8]. The current section discusses an important class of spline
functions, called cubic splines, and MATLAB implementation
of the ideas herein.

When polynomials are used to interpolate data, it is possible to
get large oscillations between data points. This phenomenon
is illustrated in the graph below, where a polynomial is fitted
to uniformly-spaced data points from the function f(t) = .
Splines offer an interpolation approach that does NOT yield
such oscillations.

‘x’ = data points used for interpolation
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What are
cubic splines?

Roughly, a cubic spline is a function formed by patching to­
gether cubic polynomials, forcing the function values, first and
second derivatives to agree at the patching points. In this way,
a curve is obtained that has a continuous second derivative.
The cubic polynomial on the ith subinterval is called S,-. The
entire spline (formed from the pieced-together cubics) is called
S.

S

(<2,2/2),
etc.
are the ‘knots’

The ideas behind cubic spline interpolation can be illustrated
using just three data points; call them

(<i,2/i), (<2.2/2), (<3,2/3), <1 < *2  < *3  •

These points need not be equally spaced. In the context of
splines, interpolating points are commonly referred to as ‘knots’.
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5i(t), S2(t)

there are
8 unknowns

The /-values of these three data points naturally yield two
subintervals, [ti, t2] and [t2, t3], called the first and second subin-
terval, respectively. On the first subinterval, let

Si(<) := no + cut + ci2t2 + ci3t3 .

Similarly, on the second subinterval, let

S2(t) := c2o + c21t 4- c22t2 + c23t3 .

The following naming convention is used for the polynomial
coefficients:
• The first subscript in the coefficient ci;- agrees with the

subscript on S,-, and gives the subinterval on which S,- is
defined. Thus, Si is a cubic polynomial on the first subin­
terval, which has coefficients cy.

• The second subscript in the coefficient c,j- tells the power of
t that the coefficient multiplies. For example, ci0 multiplies
the t° (constant) term, and ci3 multiplies the t3 term.

The cubic spline is formed by appropriately patching together
Si and S2. Observe that there are 8 unknown coefficients:
cio,... ,ci3,c2o,... ,c23. Thus, due to the linear nature of the
problem, 8 pieces of (non-overlapping, non-contradictory) in­
formation are needed to solve uniquely for these coefficients.

Requiring that the curves pass through the appropriate data
points yields 4 equations:

■S’i(ti) = j/i

Si (t2) = 2/2

■?2(<2) = 1/2

■S2G3) = 2/3

Requiring that the first and second derivatives agree at the
‘patching point’ yields 2 more equations:

Sfa) = S'M
5'1^2)
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There are two additional pieces of information needed.
Observe that the resulting spline function S will only be defined
on the interval [ti,i3]. Therefore, S is useless for predictive
purposes.

Sl(t2) = S'2(t2

Sl'(t2) = S^t2)
£2(^3) — 3/3

■S'i(*2) = 3/2

^2^2) = 3/2

= 3/1

more general
counting
argument

Here is the scenario when there are N > 2 data points: in
this case, there are N - 1 subintervals, and hence N - 1 cubic
polynomials being patched together. Thus, there are 4(N -1) =
477-4 unknowns.
Requiring that the spline pass through the data points yields
2 equations (for the endpoints), plus 2(77 - 2) equations (for
the interior points). This gives a total of 2 + 2(77 - 2) = 277 - 2
equations.
Requiring that the first and second derivatives agree at the
interior points yields another 2(77 - 2) = 277 - 4 equations.
Together, this yields (277 - 2)+(277-4) = 477 - 6 equations. Again,
two additional equations are required to reach the number of
unknowns, 477 - 4.

the natural One way to impose the remaining two conditions is to require
cubic spline that the second derivative be zero at the endpoints; for the

situation where there are only three points, this gives

S'1'(ii) = 5''(t3) = 0.

The resulting spline is called the ‘natural’ cubic spline function.
A program for computing natural cubic splines is included at
the end of this section.



207

the natural
cubic spline
minimizes
curvature

the second
derivative
of a function
measures
how ‘curvy’ the
function is

There are other ways to impose the remaining two conditions.
For example, the ‘not-a-knot’ condition requires that

= ^"(/2) and S^'_2(tx-i) = •

In this case, the functions Si and S2 agree in function value,
first, second and third derivatives at t2, from which it follows
that Si is identical to S2. Similarly, the functions Sn-2 and Sn-i

must be identical. Hence, the points (i2,y2) and (tjf-i,yN-i) are
not knots, and the name is appropriate. The built-in MATLAB
spline command uses the ‘not-a-knot’ condition.

X
i
i
i
ti

The natural cubic spline has the property that it minimizes the
integral

Jti

over all possible functions f that have continuous second deriva­
tives on the interval [<i, t3] [S&B, p. 96]. What is the significance
of this minimization property? The answer lies in the fact that
the second derivative of a function measures how ‘curvy’ that
function is, as follows:

Recall that if a function f is differentiable at t, then /'(t) gives
the instantaneous rate of change of the function values f(t)
with respect to the inputs t, at the point (t,/(/)).
If f is twice differentiable at t, then the second derivative
(f'y(t) := /"(t) gives the instantaneous rate of change of the
slopes f'(t) with respect to t; that is, f" measures how fast the
curve ‘turns’.



208

rewriting the
constraints
in terms of
the coefficients Cij

For example, if the second derivative is large and positive, then
the slopes increase quickly; and if the second derivative is small
and positive, the slopes increase slowly:

f" large and positive;
turns quickly

f" small and positive;
turns slowly

In this way, the second derivative is a measure of ‘curviness’.
The integral (f"(t))2dt ‘sums’ the contributions of (/"(0)2 on
the interval [ti,Z3]. (The quantity /"(t) is squared, since one is
only interested in the magnitude of and not its sign.)
Thus, the number f**  (f"(t))2 dt is a measure of the ‘curviness’ of
the function f on the interval [«i,t3]- With respect to this mea­
sure of ‘curviness’, the natural cubic spline is the least curvy
interpolate of the data points, over all possible interpolates
that have a continuous second derivative.
In practice, the natural cubic spline is very similar to the
‘not-a-knot’ spline. One example, illustrating how closely they
agree, is included at the end of this section.

Returning to the simple case of three data points, the 8 imposed
conditions for the natural cubic spline can be rewritten in terms
of the coefficients c,y, yielding a system of 8 equations in 8
unknowns.
Observe that with

5,(0 = c,o + cut + ci2t2 + ci3t3 ,

one has
S|(0 = c,-i + 2c,'ji + 3c,’3t2

and
S"(0 = 2c,2 + 6ci3Z .
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The 8 constraints for the natural cubic spline are therefore

2 3Cio + C1111 + C12<1 + Ci3tl = yi

Cio + Cll<2 + c12^2 + C13<2 = 2/2

C20 + C2L*2  + C22^2 + c23<2 = V2

c20 + C21<3 + C22^3 + c23<3 = 2/3

Cn + 2Cj2*2  + 3ci3<2 = C21 + 2C22^2 + 3c23<1
2C12 + 6013/2 = 2C22 + 6C23*2

2cj2 + 6ci3ti = 0
2C22 + 6023/3 = 0 ,

or, in matrix form,

A c y

■1 <1 tl t3li 0 0 0 0 ■ 'Cio' rvi i
1 *2 tl <3

l2 0 0 0 0 C11 y2
0 0 0 0 1 t2 /2

l2 t32 C12 1/2
0 0 0 0 1 t2l3 t33 C13 ys
0 1 2<2 3/1 0 -1 -2t2 -3/1 C20 0
0 0 2 6/2 0 0 -2 — 6*2 C21 0
0 0 2 6/1 0 0 0 0 C22 0

.0 0 0 0 0 0 2 6/3 . -C23- .0.

For convenience, denote this in the form Ac = y, with appropri­
ate definitions for A, c and y. It can be shown that the matrix A
is always invertible [S&B, p. 101], so the coefficients are given
(at least theoretically) by

c = A~ly .

As a simple example, the natural cubic spline through the three
data points

(0,1), (1,3), (2,2)

is computed. The matrix (*)  becomes:

-1 0 o2 o3 0 0 0 0 - "Cio" ’I"
1 1 12 l3 0 0 0 0 Cn 3
0 0 0 0 1 1 I2 I3 C12 3
0 0 0 0 1 2 22 23 C13 2
0 1 2 3 0 -1 -2 -3 C20 0
0 0 2 6 0 0 -2 —6 C21 0
0 0 2 0 0 0 0 0 C22 0

.0 0 0 0 0 0 2 12. -C23- .0.
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Solution of this system (here, using MATLAB) yields the c
column vector:

c =
1.0000
2.7500

0
-0.7500
-0.5000
7.2500

-4.5000
0.7500

The spline is graphed below. On the same graph is shown
the unique parabola (degree 2 polynomial) that passes through
these three points. Observe that the spline is ‘less curvy’ than
the parabola. (To see this, note that the ‘least curvy’ path
between, say, the points (0,1) and (1,3), is the line segment
connecting these two points—and the spline is closer to this
line segment.)

the matrices get
very large,
very fast

One has probably noted that the matrix A in the system (*)  gets
very large, very fast, as the number of data points increases.
Numerical methods to compute splines take a dramatically dif­
ferent approach to the problem, which results in smaller matrix
sizes. The interested reader is referred to [S&B, 97-102] for de­
tails.
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MATLAB IMPLEMENTATION
Polynomial and Spline Interpolation

PURPOSE MATLAB provides built-in commands for polynomial approx­
imation and interpolation, and for cubic spline interpolation
(with the ‘not-a-knot’ condition). In what follows, let t be a
vector containing the time values of a data set {(«,-,y,)}and
let y be a vector containing the corresponding data values. The
entries of t should all be distinct. There are N data points.

MATLAB
COMMANDS:
polyfit

The command
p = polyfit(t,y,k)

fits the data set with a polynomial of degree k. The returned
vector p contains the coefficients of the fitting polynomial, p(t),
in descending powers of t.
If k > N-1, then the resulting polynomial will pass through all
the data points; in this case, the polynomial is an interpolate
of the data set. If k < N - 1, then the resulting polynomial fits
the data in a least-squares sense.

polyval The output p from the previous command can be input into
the polyval (‘polynomial values’) command, in order to plot the
‘fitting’ polynomial. Whenever p is a vector whose elements are
the coefficients of a polynomial in descending powers, then the
command
yfit = polyval(p,tfine)

returns a vector yfit that contains the polynomial p evaluated
at each element in tfine. The command
plot(tfine,yfit,’. ’)

can then be used to view the fitting polynomial.

MATLAB
COMMAND:

Let S be the ‘not-a-knot’ cubic spline that passes through the
data points {Gi,y»)}ili • Let t and y be vectors containing the

spline time and data values, respectively, and let tfine be a vector
containing numbers from the interval [ti,t/v]. The command
yspl = spline(t,y,tfine)

returns, in the vector yspl, the values S(tfine).

EXAMPLE
diary of
an actual
MATLAB session

The following diary of an actual MATLAB session illustrates
the use of the MATLAB commands discussed here.
A noisy data set, with a missing value, is generated. Both the
polyf it and spline commands are used to fill in the missing
value.
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% Note that t = 3 is 'missing'
t - [0 1 2 4 5 6 7 8 9 10];
noise =» .3*(rand(t)  - .5);
y = sin(t) + noise;
subplot(221)
plot(t,y,'x')
hold

Current plot held
tfine = [0:.01:10];
yfine = sin(tfine);
plot(tfine.yfine)

% 3 data points on each side of t = 3 will be used
i = [J 2 3 4 § 6];

% First, polynomial approximation with a degree 2 polynomial
p » polyfit(t(i),y(i),2);
yintpol = polyval(p,3)

yintpol =

0.1420
plot(3,yintpol,' o')
% Next, spline interpolation
yspl = spline(t(i),y(i),3)

yspl =

0.2051

plot(3,yspl,'*')
% The two interpolation points are so close that they are hard to
% distinguish from one another. These points are circled in
% the graph below.
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The MATLAB function given next computes the natural cubic
spline. An example illustrating its similarity to the ‘not-a-knot’
spline follows.

% copyright 1993 Carol J.V. Fisher
% This function computes the unique CUBIC SPLINE S(x)
% that passes through the N data points (x_i,y_i), i = 1,...,N ,
% and that satisfies S"(x_l) = S"(x_N) = 0 .
% This spline is then used to interpolate:
% let xfine = (xf_l,...,xf_M) be an input vector whose corresponding
% outputs on the spline are desired:
% the components must be listed in increasing order; i.e.,
% xf_l < xf_2 < .. . < xf_M .
% Also, it is required that xf_l >= x_l and xf_M <= x_N . (Splines
% can only be used for INTERPOLATION, not EXTRAPOLATION.)
%
% To use this MATLAB function, type:
% v = cfspline(x,y,xfine)
% where v = <vector to contain output>
% OR
% [v,C] = cfspline(x,y,xfine)
% where
% C = <matrix to contain coefficients of cubic polynomials
% on each subinterval>
% x is a vector containing the inputs x_i, i = 1,...,N ;
% y is a vector containing the outputs y_i, i = 1,...,N ;
% xfine is a vector containing the x-values xf_i of desired
% interpolation points; xfine may be of any size. See above
% comments for additional requirements on xfine.
%
% The vectors may be row or column vectors; the output is returned
% in the same form as the input data.
*
% The function returns the spline values S(xf_i) in v .
% The function optionally returns the coefficients
% C {10) C_(ll) C_{12) C_{13)
% c~{20) c_{21) C_(22) c_{23) etc.
% in c .
% The algorithm used is described on pp. 97—102 of:
% Introduction to Numerical Analysis, by J. Stoer and R. Bulirsch
%
function [output,C] ■» cfspline(x,y,xfine)
N = length(x);
Nx - size(x); if Nx(l) — 1, x - x'; end
Ny = size(y); if Ny(l) -= 1, y = y'; end
Nxfine = size(xfine); if Nxfine(l) ~= 1, xfine = xfine'; end
h - diff(x); hdf =■ h(2:N-l); hdl = h(l:N-2); hp - hdf + hdl;
L = hdf ./ hp;
MU - 1 - L;
MU - [MU 0];
L = [0 L] ;
dy - diff(y); dydf - dy(2:N-l); dydl = dy(l:N-2);
D - (6 ./ hp) .*  ( (dydf ./ hdf) - (dydl ./ hdl) ) ;
D = [0 D 0];
A = diag(2*ones(N,l) ) + diag(L,l) + diag(MU,-l);
M = inv(A) * D'; M = M';
Mdf = M(2:N); Mdl = M(1:N-1);
CO = y(l:N-l);
Cl = (dy ./ h) - (l/6)*(2*Mdl  + Mdf) .*  h;
C2 = (.5) * Mdl;
C3 = (Mdf - Mdl) ./ (6*h);
C = [CO;C1;C2;C3];
k - 1;
sxf = length(xfine);
xfine = [xfine 0];
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for i = 1:(N-l),
while k <= SXf & xfine(k) <= x(i+l),

dx =■ xfine(k) - x(i) ;
output(k) = CO(i) + ci(i)*dx  + C2(i)*(dx) A2 + C3(i)*(dx)A3;
end

end
if Nx(l) -= 1, output = output'; end

EXAMPLE

t = [0:10];
y - sin(t);
subplot(221)
plot(t,y,'x')
hold

Current plot held

tfine - [01.1:10];
yspl =*  spline(t,y,tfine);
plot(tfine,yspl)
natspl - cfspline(t,y,tfine);
plot(tfine,natspl,'•')
% The two curves are so close that they are hard to distinguish.
% The 'difference curve' is plotted next.
hold

Current plot released
diff = yspl - natspl;
plot(tfine,diff) ----
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2.6 Discrete Fourier Series and the Periodogram

Introduction Suppose is a data set with a uniform time list; let
AT > 0 be such that tk+i —tk = AT for k = 1,... , N— 1. If it is sus­
pected that this data set has at least one periodic component,
but there is no specific conjecture as to its period or form, then
the discrete Fourier series corresponding to the data may give
useful information regarding the periodic component.
The reader should compare the results in this section with
the corresponding results regarding continuous Fourier series,
which were reviewed in Section 1.6.
The next few results will lead to the definition of the discrete
Fourier series.

THEOREM 1 Consider the constant function f(t) = 1, and the functions

. 2irkt . 2irktsin —— ana cos ■■P P

for k = 1,... ,K, where P is a positive real number, and K is a
positive integer. This collection of 2K +1 functions is mutually
orthogonal with respect to the time values ti,... where
N > 1 is a positive integer, if the following conditions are met:
• The list (ti,t2.......<n) is uniform with AT = £ , and
• N > 2K + 1.

PROOF
of Theorem 1

Recalling the definition of mutually orthogonal functions from
page 165, it must be shown that

^2 coscos 27l^<n = 0 , j,k = 1,... ,K, j / k , (1)
n=l

N£>in^sin^- = 0, j,k = l,...,K, j±k, (2)
n=l

£sin^cos^ = 0 , j,k = l„ ..,K, and (3)
n=l

N N£cos^ = £sin^ = 0, k = l,...,K. (4)
n=l n=l



216

The proof makes use of the identities

cost = i(e“ + e-u) and sint = ^(e,t ~ e~a) > V t G R ,

and Proposition 2 from Section 1.6, which states that

N-l N—l
y e2*k,(ft) = o and y^ e~2,rk,(^r) = o
n=0 n=0

whenever N and k are positive integers with N > 1, and
1 < £ < TV - 1. Since the time list is uniform with spacing £,
one can write tn = fi + (n-l)y for n = 1,... ,N. Let j, k = 1,... ,K
with j / k. Then,

N

N

N

e e

2irkt\ 2irkn

2irkt\ 27rk(n —

2itjtn 2irktncos —-—

2irjti 2tfjn\-------- 1------- I cosP N J
N-l

= y cos
n=0
1 ^-1

2^cos~
n=l

N 2irjti i 2irj(n —
~P~+ N~

To simplify notation, let Cj := and C*  := . Observe
that both Cj and Ct are independent of the index of summation,
n. With this notation,

(5)
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Since j and k take on positive integer values between 1 and K
with j / k , and since N > 2K + 1, it follows that

3<j + k<K + (K-l) = 2K-l<(N-l)-l = N-2.

In particular, 1 < j + k < N — 1, so by Proposition 2, the first
and second sums in equation (5) vanish.
Without loss of generality, suppose that j > k . Then,

TV _ i
l<j-fc<A-l< —------ 1 < N - 1 .

In particular, 1 < j—k < N—1, so the third and fourth sums also
vanish. This completes the proof of (1). The same technique
applies, with obvious changes, to prove (2).

To verify (3), drop the restriction that j and k be nonequal,
and compute

N

£sin
n=l

2irjtn 2irktt—-— cos ——

second sum

N-l

n=0

1 N~1 1+ le«(C,-C») Y' e2r(j-*)i(^)  _ Ig-KCy-C*)  V- e-MJ-t)i(Ty)
4i Z_/ 4f

n=0

n=0
fourth sum

N-l

first sum

i N-1 7_Le«(Ci+Ck) e2x(i+k)i(^)_ le-ICj+C*) y* e-2>rb+k).(^)
4i 4in=0

third sum

(6)

If j / fc, then previous arguments show that all four sums van­
ish. If j = k, then the last two sums cancel, since Cj = Ct and
j - k = 0. Also, if j = k, then j + k = 2j < 2K < N - 1, so the first
two sums vanish.

Similar arguments show that equations (4) are true. |

COROLLARY The restriction N > 2K +1 in Theorem 1 is as good as possible;
that is, no smaller value of N works. In particular, if N = 2K
and j = k = K, then the condition

A . 2irjtn 2irktn ,2_^ sin ■— - cos — = 0, j,k=l,...,K
n=l

holds if and only if is an integer.
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PROOF It is first shown that when N = 2K, Theorem 1 is not true.
Let K = 2, N = 4, P = 2tt, and («i,t2,t3,= (f, &■). Let
j = k = 2. Then,

v-> . 2irjtn 2irktn r—* • «> sin —-— cos —-— = ) sin 2tn cos 2tn
n=l n=l

7T 7T . 5?r 5tT= sin — cos — + sin — cos —4 4 4 4
. 9tt 9ir . 13tt 13tt+ sin — cos — + sin —— cos ——4 4 4 4

= 4(|)/0.

Next, it is shown that Theorem 1 holds with N > 2K+1 replaced
by the less restrictive requirement N > 2K, if and only if
is an integer. It is only necessary to consider the case N = 2K .
When N = 2K and j / k, then

3 < j + k < K + (K - 1) = 2K - 1 = N - 1

and, for j > k,

l<j-k<K-l = — -l<N-l.

Thus, equations (1) and (2) from Theorem 1 still hold. Also,
equation (3) holds whenever j ± k.

Suppose that j = k , and consider equation (6) from the proof of
Theorem 1. The third and fourth sums cancel. If j < A, then
j + k < 2K, so that j + k < N - 1, and the first and second sums
vanish. If j = k = K, then the first and second sums become

N-l . N-l
•+<?*)  V e^W+W) _ ig-KCj+c*)  y^ e-2r(y+t)»w

4i 4in=0 n=0
1 ^-1 1 N~1

_ _e2>CK y*  e4xKi(^)__ 2_e-2»CK y^ e~4TKi(^)
4i 4:n=0 n=0

N-l 1 N-l
_ _£c2»Ck y^ e2xin____2_e-2icK y^ e-2””

4i * 4t *n=0 n=o
= ^iCK _ e-2.CK)

N= — (2isin2Cjc) •4i
(7)
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Thus, (7) equals zero if and only if sin2Cx equals zero, if and
only if 2Ck is an integer multiple of t. That is, it must be that

2CK := 2 2irKt i \
—P~ J =

for some integer j; that is, must be an integer. Note that
if is an integer, or if h = 0, then equation (7) equals zero.
In the counterexample given above, = 1 js not an
integer. |

COROLLARY Let the conditions of Theorem 1 hold. Then
N

cos ——- = — , k = , andp 2 > > >

A • 2 27rfcin N
2^sm —p~ = ~2' k = l,...,K.

PROOF Let k = 1,... ,K. Using (5) from Theorem 1 with j = fc, one
obtains

N 1 N~1 i Ar_1
cos2 n = -ei2C" e2’<2t>^> + -e~i2Ck e-2’(2i)*W

n=l P n=0 4 n_Q
. N-l . N-l

n=0 n=0

Since 2k < 2K < N - 1, Proposition 2 (Section 1.6) implies that
the first and second sums vanish, and thus

N
52 cos2
n=l

27T&tn
P

N_ N__N
4 + 4 ” 2 '

A similar procedure verifies the second result. |
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THEOREM 2

PROOF
of Theorem 2

Let P be a positive real number, and let N and K be positive
integers with N > 2K + 1. Let {(/,-, i/.)}£Li be a data set, where
the time list (h,... is uniform with AT = . Define

/ 2?rfct . 2irkt vf(t) := a0 + 2_^\ak cos —— + bk sin ——) .
t=i r r

Then, the least-squares solution to

.76lE(w-M))2
n=l

is given by

2 2?rfcin
ak = n / >y- cos~p~ ’ k = l,...tK,

n=l

2 . 2Trktn .io tz
bk = jy / , yn sin —p~ ’ k = l,2,...,K.

Recalling results from Sections 2.2 and 2.3, the least-squares
solution b = (a0) ai,... , aK, i»i,... , &k) is given by b = (X‘X)-1X‘y,
where y is the column vector of data values,

/i(0 = 1 .

A+i(<) = COS-p- , k = l,...,K,

ffc+(K+i)W = sin • k = l,...,K,

and

X.j = , l<i<N , 1 < j < 2K + 1 ,

N
(X‘X)y = , 1 < i, j < 2K + 1 .

n=l
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By Theorem 1, the functions {/t)i=i+1 are mutually orthogonal
with respect to the given time values, so the matrix X*X  is
diagonal, with

(X‘X)n = N ,
(X'X)w,l+1 = f>2^=y , 1 = 1,...K , and

n=l

V' -_2 _ N i._  1(XX)t+K+i,t+K+i = / .sin p - y > «-l,...,A.

Recall that the inverse of a diagonal matrix is easily found by
taking the reciprocals of each diagonal entry. Thus,

N
2
N

W*r l)kk =
fc = i
k = 2,... ,2/< + l .

The matrix product b is now computed:

b = (X<X)-1Xty

-J. 0 0 ••• o 1 71(^1) /1G2) AGs) ryi'i»
0 2

y 0 •.. 0 /z(<l) /2G2) /2G3) /2(<2V) 3/2

= 0 0 2
N 0 /s(<l) /3G2) /3(t3) f3(tN) V3

. 0 0 0
0
2
N J

-/2K+1G1) /2K+1G2) f2K+l(.i3) ■' /2K+1(*?/)- -UN-

N

y/iGi) W/1G2) jv/i(f3) •" AAGn) ■yi'

^■/2(^) y/2(i2) W3) ••• 1/2

— y/3(ti) y/sG2) y/3(t3) y/sGjv) V3

.y/2K+l(h) y/2K+l(^2) y/2K+l(*3)  ••• y/2K+i(tjv). -DN-

y cos yr

2.2x21
N COS P

2 2xKti77Sin £

y cos

^cos^yr

2 2xKt-jySin—p-*

y COS

2y cos 2x2*1.
P

2 _• 2xKtsySin—p-1

1 -1
N ■yi'

£cos^ V2

£cos2^ y3

£sin2^_ ■ VN-
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It follows readily that the coefficients have the desired form. I

AT AT

Let TV be a positive integer, and suppose that a data set {(/,-,
has a time list (ii,... ,In) that is uniform with positive incre­
ment AT. By defining P := NAT, one has y = AT, so that P
meets the requirements of Theorems 1 and 2. Note also that
P = tN -ti + AT.

P = NAT = tN-h + AT ------ (------ <-
ti tz tN

Any value of K that is less than or equal to will meet
the requirements of Theorems 1 and 2. In the next definition,
K is usually taken to be as large as possible, subject to the
condition K < .

DEFINITION
discrete
Fourier series
(DFS);
periodogram

Let TV be a positive integer, and let {(/<, s/» )}£L i. be a data set with
a time list (h,... ,In) that is uniform with positive increment
AT. Define P := NAT. Let K be any positive integer less than
or equal to .
The discrete Fourier series corresponding to the data set and
the chosen value K is the function DFS given by

DFS(i) := a0 + 23 (a* cos ~p~ + bk sm ——) ,
i=i r

where the coefficients a0,ai,... ,aK,bi,... ,bK are given by

1 N
a° = x^yn -

n=l
2 2irktn ,

ak = N ? , yn c°s p , = and
n=l

bk= NJ2ynSin p , k = 1,2,... ,K .
n=l

The graph of the points

{(rT\/a*+60 |fc = 1.......K}

is the periodogram corresponding to the discrete Fourier series.

The reason for the factor in the definition of the periodogram
will become apparent in the next section, on the discrete Fourier
transform.
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properties of
the DFS

The periods of the sinusoids appearing in the discrete Fourier
series are

p P P P.
’ 2 ’ 3 ’ ’ K '

the coefficients a*  and multiply the sinusoids with period
y. The coefficient a0 gives the average of the data values. If
N = 2K + 1, then the discrete Fourier series passes through all
the data points; and if N > 2K + 1, then the series minimizes
the mean-square error.
The periodogram gives information about ‘how much’ of each
period is present in the data set, as the examples later on in
this section will illustrate.

comparing the
discrete and
continuous
coefficients

Observe that if one takes the formula for the continuous Fourier
series coefficient at (see p. 81),

2 fp . . 2ttH
ak~P Jo 9 * C°S ~P~ dt '

replaces the $p by •> dt the increment £, t by tn, and
g(t) by yn , one obtains

2 / 27rfctn\ P 2 27rfc/n«k-F2^ynlcos p ) ■-N = N2^y»CO3 p >
n=l ' ' n=l

which is precisely the discrete Fourier coefficient a* . So there
is a beautiful (and not unexpected) analogy between the con­
tinuous and discrete results.

MATLAB IMPLEMENTATION

Discrete Fourier Series and the Periodogram

MATLAB
FUNCTION
dfs(D,K)

The following MATLAB function computes the discrete Fourier
series and periodogram corresponding to a data set. To use the
program, type:
[per.sqrcoef,C,DFS] =dfs(D,K);
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required
input, D

The required input is a data set {(/,-,za)}£Li, with N > 3. The
time values must be stored in a column vector t and the cor­
responding data values in a column vector y. Then, D = [t y]
is the N x 2 matrix containing the data set. The time list con­
tained in t must be uniform (increment AT > 0). The program
begins by checking that this requirement is met; if not, the
program is halted and the message ‘not a uniform time list’ is
displayed. (As written, increments between time values are
said to ‘differ’ if they differ by more than 0.0000001 . This value
may be changed for different tolerances.)

optional
input, K

The number K must satisfy N > 2K +1, that is, K < . If
no value of K is supplied, then the program uses the greatest
possible K satisfying the stated requirement.

outputs:
per
sqrcoef

The output per is a column vector containing the periods
P, y, 4, ... , # , where P = NAT.
The output sqrcoef (for ‘square root ... coefficients’) is a col-
umn vector containing the numbers + b'2k for k = 1,... , K.

The periodogram is then obtained with the command:
plot(per,sqrcoef)

If only the outputs per and sqrcoef are desired, the shorter
command
[per,sqrcoef] = dfs(D);
or
[per,sqrcoef] = dfs(D,K);
may be used.

outputs:
C
DFS

The (optional) output C is a column vector containing the co­
efficients a0,ai,bi, a2,b2,... ,aK,bK (in the order given).
The (optional) output DFS is a column vector containing the
values DFS(tn) for n = 1,... , N .

source code The source code for the function dfs is given next.
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% copyright 1993 Carol J.V. Fisher
function [per,sqrcoef,C,DFS] = dfs(D,K)
% This function computes the discrete Fourier series and periodogram
% for a data set D = [t y] ,
% where the time values form a uniform time list.
% The number of data points (rows in D) must be greater than or equal to 3.
% K is an (optional) positive integer; if no value of K is specified
% then the greatest integer less than or equal to (N-l)/2 is used.
t - D(:,l);
% First, check that the time list is uniform:
d = diff(t);
% entries that differ by more than .0000001 are called 'different'
p = ( abs(ones(d)*d(l)  - d) > .0000001);
err = find(p);
if max(err) ~= 0

'not a uniform time list'
return

end
N = length(t);
dT = t(2) - t(l);
P = N*dT;
y = D(:,2);
% 'nargin' is the 'number of arguments into the function'
if (nargin == 1)
K = floor( (N-l)/2 );

end
% Initialize the matrices
per = zeros(K,1);
sqrcoef = zeros(K,l);
% the matrix C is of the form:
% a_o o
% a_l b_l
% a_2 b_2
% 
% a_K b_K
C = zeros(K+l,2);
DFS = zeros(1:N)';
C(l,l) = (1/N)*sum(y) ;
for k = 2:(K+l)
tvec = (2*pi*(k-l)/P)*t;
cosv = cos(tvec);
sinv = sin(tvec);
C(k,l) = (2/N)*sum(y  .*  cosv);
C(k,2) = (2/N)*sum(y  .*  sinv);
per(k-l) = P/(k-l);
sqrcoef(k-1) = sqrt( (C(k,l))A2 + (C(k,2))A2 );
DFS = DFS + C(k,l)*cosv  + C(k,2)*sinv;

end
sqrcoef = (N/2)*sqrcoef ;% Here's the Discrete Fourier Series corresponding to the data:
DFS = C(l,l) + DFS;
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MATLAB
EXAMPLE
sinusoidal
components,
periods in the
DFS

In this first example, a data set is constructed having sinusoidal
components of periods 25 and 10. Fifty data points are used,
with AT = 1, so that P = (50)(l) = 50. The largest allowable
value of K is used: since K < , the greatest such K equals
24. Observe that the periods f = 10 and f = 25 appear in the
discrete Fourier series.
First, the ‘pure’ data (no noise) is analyzed. Of course, the
discrete Fourier series ‘recovers’ the components perfectly in
this case.
Then, some noise is added to the data. In this case, the peri­
odogram clearly peaks at periods 10 and 25. However, the noise
has contributed some small amplitude, high frequency (small
period) components in the discrete Fourier series.

t = [1:50]';
y = sin(2*pi*t/10)  - 2*cos(2*pi*t/10)  + 3.2*cos(2*pi*t/25)  ;
D = [t y];
[per,sqrcoef,C,DFS] = dfs(D);
% plot the periodogram
plot(per,sqrcoef,'x')
% plot the data set, together with its discrete Fourier series
plot(t,y,'x')
hold
Current plot held
plot(t,DFS,'o')

C =
per =

50.0000
25.0000
16.6667
12.5000
10.0000
8.3333
7.1429
6.2500
5.5556
5.0000
4.5455
4.1667
3.8462
3.5714
3.3333
3.1250
2.9412
2.7778
2.6316
2.5000
2.3810
2.2727
2.1739
2.0833

-0.0000
-0.0000
3.2000

-0.0000
0.0000

-2.0000
-0.0000
0.0000
0.0000

-0.0000
0.0000

-0.0000
-0.0000
-0.0000
-0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

-0.0000
-0.0000
0.0000

0
0.0000
0.0000
0.0000
0.0000
1.0000

-0.0000
-0.0000
-0.0000
0.0000

-0.0000
0.0000
0.0000

-0.0000
-0.0000
-0.0000
0.0000
0.0000
0.0000
0.0000

-0.0000
0.0000
0.0000

-0.0000
-0.0000

DATA SET, ‘x’

Note that the data set is indistinguishable
from its discrete Fourier series, as appar­
ent by the overlapping of the symbols ‘x’
and ‘o’.
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% Now, add some noise to the previous data, and repeat
noise = 2*(rand(t)  - .5);
y = y + noise;
D = [t y] ;
[per,sqrcoef,C,DFS] = dfs(D);
plot(per,sqrcoef,'x')
plot(t,y,'x')
hold
Current plot held

plot(t,DFS,'o')

C =
per =

0.0185 0
50.0000 -0.1248 -0.1455
25.0000 3.1817 -0.0103
16.6667 -0.0528 0.2176
12.5000 -0.1608 -0.0117
10.0000 -2.1438 0.90648.3333 -0.0281 0.0704
7.1429 -0.2543 -0.16606.2500 0.2033 0.06915.5556 0.0202 -0.08645.0000 -0.0811 -0.03484.5455 -0.1093 0.00024.1667 0.1705 0.0379
3.8462 0.2987 -0.0256
3.5714 -0.0043 0.1229
3.3333 0.1642 0.02143.1250 -0.1701 -0.1589
2.9412 -0.0757 -0.14852.7778 0.0394 0.08772.6316 0.0665 0.11792.5000 0.0927 -0.00872.3810 -0.0240 -0.02122.2727 0.0263 0.20642.1739 -0.1148 -0.06422.0833 -0.0276 0.0055

80
PERIODOGRAM

60 X

40

20

°() 10 20 30 40 50

DATA SET, ‘x’

DISCRETE FOURIER SERIES, 'o’



228

MATLAB
EXAMPLE
sinusoidal
components,
periods are
NOT in the DFS

In this second example, a data set is constructed having si­
nusoidal components of periods 15 and 32. Fifty data points
are used, with AT = 1, so that again P = (50)(l) = 50. Again,
the largest allowable value of K is used; K = 24. Observe that
the periods of the sinusoids in the data are not in the discrete
Fourier series.
First, the ‘pure’ data (no noise) is analyzed. The periodogram
‘peaks’ at the period = 161, which is close to one of the
‘hidden’ periods, 15. The period 32 component is not easily
detectable from the periodogram.
Then, some noise is added to the data. The situation is similar
to that described above, but with a Ettle more ‘fuzz’.

t = [1:50]';
y = sin(2*pi*t/15)  - cos(2*pi*t/15)  + 1.4*sin(2*pi*t/32)  ;
D = [t y] ;
[per,sqrcoef,C,DFS] = dfs(D);
plot(per,sqrcoef,'x')
plot(t,y,'x')
hold
Current plot held
plot(t,DFS,'o')

C =
per =

50.0000
25.0000
16.6667
12.5000
10.0000
8.3333
7.1429
6.2500
5.5556
5.0000
4.5455
4.1667
3.8462
3.5714
3.3333
3.1250
2.9412
2.7778
2.6316
2.5000
2.3810
2.2727
2.1739
2.0833

0.3216
1.0299

-0.7310
0.1483

-0.2025
-0.0739
-0.0331
-0.0127
-0.0007
0.0071
0.0124
0.0163
0.0191
0.0213
0.0229
0.0242
0.0253
0.0261
0.0268
0.0273
0.0277
0.0281
0.0283
0.0285
0.0286

0
-0.0431
0.4322
1.1506

-0.5628
-0.2294
-0.1464
-0.1080
-0.0854
-0.0703
-0.0593
-0.0507
-0.0439
-0.0381
-0.0332
-0.0289
-0.0251
-0.0216
-0.0184
-0.0154
-0.0126
-0.0100
-0.0074
-0.0049
-0.0024

DATA SET, ‘x’
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noise = 1.5*(rand(t)  - .5);
y = y + noise;
D = [t y);
[per,sqrcoef,C,DFS] = dfs(D);
plot(per,sqrcoef,'x')
plot(t,y,'x')
hold

Current plot held
plot(t,DFS,'o')

C =

0.3355 0
50.0000 0.9363 -0.1522
25.0000 -0.7447 0.4245
16.6667 0.1087 1.3138
12.5000 -0.3230 -0.5716
10.0000 -0.1817 -0.2996
8.3333 -0.0542 -0.0936
7.1429 -0.2034 -0.2325
6.2500 0.1518 -0.0336
5.5556 0.0223 -0.1351
5.0000 -0.0484 -0.0853
4.5455 -0.0657 -0.0506
4.1667 0.1470 -0.0154
3.8462 0.2453 -0.0574
3.5714 0.0197 0.0590
3.3333 0.1474 -0.0129
3.1250 -0.1023 -0.1442
2.9412 -0.0307 -0.1330
2.7778 0.0563 0.0474
2.6316 0.0772 0.0730
2.5000 0.0973 -0.0192
2.3810 0.0101 -0.0259
2.2727 0.0480 0.1474
2.1739 -0.0576 -0.0531
2.0833 0.0078 0.0017

PERIODOGRAM
DATA SET, ‘x’
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MATLAB
EXAMPLE
periodogram
of noise

‘Noise’ is usually associated with high frequency (small period)
components. In this example, the periodogram corresponding
to some noise (from a uniform distribution) is found:

t = [1:50]*;
noise = rand(t) - .5;
D = [t noise];
[per,sqrcoef] = dfs(D);
subplot(221)
plot(per,sqrcoef,'x')
plot(t,noise,'x')

0.5------- -------- T------- , DATA SET
xxx X x xX x XX

X
x X

0 -X XX x X \ X X*
y XX

y X
XX xX x x

X x x X
X X X x.051-------- 1----------------u_i------ x_i---------------- 1----------------

0 10 20 30 40 50
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MATLAB
EXAMPLE
periodogram of
a ‘ramp’

The periodograms of a couple ‘ramps’ (linear functions) are
found next:

20

15

10

5

0

„XXxX
yXXXX -

vXXxX
yXXXX

vXXX
YXXX

xXxxX
YXXXX

yXXxX
yXxXX

yXXxX
xxxxx

10 20 30 40 50
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MATLAB
EXAMPLE
non-sinusoidal
components

Finally, the periodogram of a data set with two non-sinusoidal
components, periods 10 and 25, are found. Here, NAT = (50)(l),
so these periods = 10 and = 25 appear in the discrete
Fourier series. The vertical ‘dotted’ lines on the periodogram
indicate the periods 10 and 25. Observe that the periodogram
does appear to ‘peak’ at these values.



discrete
Fourier
transform
(DFT)

fast Fourier
transform
(FFT);
an efficient
implementation
of the DFT

motivation for
the definition of
the discrete
Fourier transform
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2.7 The Periodogram, via the
Discrete Fourier Transform

The discrete Fourier transform (DFT) is a tool used to de­
termine the spectral (frequency) content of equally-sampled
data. Since the periodogram (Section 2.6) also gives informa­
tion about frequency content, one might suspect that there is
a relationship between the periodogram and the DFT. Such
is indeed the case. In this section, the discrete Fourier trans­
form is defined, and the relationship between the DFT and the
periodogram is explored.

As will be seen, there is a great deal of redundancy inherent
in the definition of the discrete Fourier transform. Elimination
of this redundancy has produced a class of implementations of
the DFT that have come to be called fast Fourier transforms
(FFTs). By using the built-in MATLAB fast Fourier transform
command, and exploiting the relationship between the DFT
and the periodogram, one obtains a much more efficient way
to find the periodogram corresponding to a data set. A ‘time
comparison’ is included at the end of this section.

Let N be a positive integer, and let {(«,-,y,)}^=1 be a data set
with a time list (fr,... ,t^) that is uniform with positive incre­
ment AT. The discrete Fourier transform is defined so that
it is independent of the starting time ti and increment AT, as
follows. First, translate the list (ti,t2 tn>... ,tN) to the list
(0, AT,... ,(n - 1)AT,... ,(N - 1)AT), via the transformation

tn (tn -fr) , n = 1,... ,N .

Next, require that P := NAT, as in Section 2.6. Under these
conditions, note that

e_,-^ = e-i^^ = .

With these comments in mind, observe that the next definition
requires knowledge only of the data values yn , and the fact that
these values did arise from a uniform time list:
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DEFINITION
discrete Fourier
transform
(DFT)

Let (j/i,... ,!/at) be N data values from a data set {(*,-, y>)}£Li with
a uniform time list. Then,

DFT(m):=£y„e-i212^ , m = 0,... ,N - 1 ,
n=l

are the N independent values of the discrete Fourier transform
of the data set.

illustrating the
redundancy in the
DFT when N = 8

To illustrate the redundancy in the DFT, consider its compu­
tation when N = 8. How many complex products, each of the
form yne~i3’m^~l) , must be computed? For a fixed value of m,
there are N such products, as n varies from 1 to N. Also, there
are N values of m. Thus, at first glance, it appears that 8 • 8
products must be computed, when N = 8. However, it will
next be shown that not all 64 of these products are distinct.

When N = 8, every exponent that appears in the DFT has
a denominator of 8, so the appropriate picture is of the unit
circle in the complex plane, with 2ir radians divided into 8 equal
pieces. Refer to the next figure as you continue reading. The
sketches there illustrate the computations for the entire DFT.
The numbers at different angles inside the unit circle indicate
the subscript n of the data value yn that must multiply the
exponential at that particular angle.

When m = 0, no ‘genuine’ complex products are involved:
DFT(O) = yi + ■■■ + yN •

When m = 1, the exponents -27r(l)(n — l)/8 in the exponential
cause movement backward around the unit circle, one step at
a time, as n goes from 1 to N. For example, y4 must multiply
the exponential at an angle of -2tt(1)(4 - l)/8 = -3tt/4 .

When m = 2, one moves backward around the unit circle, two
steps at a time, so that, e.g., now y4 must multiply the expo­
nential at an angle of -2tt(2)(4 - l)/8 = —3?r/2 .



m — 0
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How much
redundancy?

Now, the number of distinct complex products that must be
computed can be counted. The products at angles 0 and ir are
not truly complex, since eoi = 1 and e’f = -1; so these will not
be counted as complex products.

At 0 = 2tt(1)/8 , there are 4 distinct complex products (n =
2,4,6,8).
At 0 = 2tt(2)/8 , there are 6 (n = 2,3,4,6,7,8).
At 0 = 2?r(3)/8 , there are 4 (n = 2,4,6,8) .
At 0 = 2tt(5)/8 , there are 4 (n = 2,4,6,8) .
At 9 = 2tt(6)/8 , there are 6 (n = 2,3,4,6,7,8) .
At 0 = 2tt(7)/8 , there are 4 (n = 2,4,6,8) .

Thus, computation of the entire DFT actually requires only
4 + 64-4 + 4 + 6 + 4 = 28 distinct complex products.
The MATLAB command fft is an efficient computation of the
DFT, that (at least partially) eliminates the redundancy illus­
trated here.

uniform
hypotheses
for the following
Propositions

The next few propositions develop the relationship between the
DFT and the periodogram (Section 2.6). In these propositions,
the following situation is assumed to hold:
• N is a positive integer.
• {(f»i!/«)}ili is a data set with a time list (ti.......t^) that is

uniform with positive increment AT. All values of t,- and
yi are real numbers.

• K is the largest integer satisfying N > 2K + 1.
If N is odd, then N = 2K + 1, so that K = .
If N is even, then N = 2K + 2, so that K = .

• The numbers ao,aj,&i,... are the coefficients of the
discrete Fourier series corresponding to the data set (see
p. 222).

• The numbers DFT(m), for m = 0,..., N — 1, are the N
independent values of the discrete Fourier transform.

PROPOSITION

DFT(O) = N • a0 , and
DFT(m) = e’^ • ^(am - ibm), for m = 1,.... K .



PROOF First, define a function g via

Observe that

N

n=l

n=l
N

< 'A »2irm(n-l)AT

= 2Ly"e
n=l

= DFT(m) , and

g(tn - ti, m) = ^21/ne-’3
n=l

N
•3<mt | ■ . rm

= e 2^ynC t~Pr
n=l

. 3rm<i

= e'-^ ^(tn.m) .

Combining these results yields

DFT(m) = e,21?%(4n,m) .

Now,

N
g(tn,m) := ^j/ne-*2^

n=l

Y^ 2irmtn. . . ,2Trmtn= 2^yn cos(——) —ism(—■—)
n=l

,N
lT

N2 ,2Trmtn
jl^yncos(—p-

N2 • ,2irmtn
-jgl^yn^-p-

n=l

N n . N n .\ ■> z 2?rmtj2. , . 27TT7it<= ^yn cos(——) - i > yn sin(——
n=l

_ a
~ 2

When m = 0,

DFT(0) = e<2^.^n>0)

= N ■ a0 .

237
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For m = 1,... ,K ,

DFT(m) = e^.^.rn)
_e>2^-L . ?L(am -ibm) . |

the previous
proposition
describes the
first half of
the DFT list

With this proposition, the first half (approximately) of the N
DFT values has been described in terms of the discrete Fourier
series coefficients. The next proposition shows that the remain­
ing DFT values are completely described in terms of the first
half. The following sketches illustrate the situation when N is
even, and when N is odd.

N even
Example: N = 6, K = 2

DFT(O)
s DFT(l)

complex f f DFT(2)
conjugates i ( DFT(3)^ real

\ X. DFT(4)
DFT(5)

N odd
Example: N = 5, K = 2

DFT(O)
DFT(1)\
DFT(2) complex
DFT(3) )J conjugates
DFT(4)X

General Situation: General Situation:

complex
conjugates

DFT(O)
DFT(l)
DFT(2)

x- DFT(f - k)

^DFT(f-l)
f DFT(f)<-real

DFT(f+ 1)

DFT(f+ *)

DFT(y- 1)

DFT(O)
DFT(l)
DFT(2)

DFT(*±i -1) >
DFT(^) 7

DFT(*± i+ (*-!))

complex
conjugates

DFT(7V -1)
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PROPOSITION When N is even, then DFT(y-fc) and DFT(y + fc) are complex
conjugates, for k = 1, . Also, DFT(^) is a real number,

NDFT(—) = yi -1/2 + j/3 - + • • • + yN-i - vn ■£

When N is odd, then DFT(^^ - k) and DFT(^±i + (jfc - 1)) are
complex conjugates, for k = 1,... , K .

PROOF
N even

Suppose first that N is even. Let m = y- ± k, and let Re(z)
denote the real part of a complex number z. Then,

Re(e—----- ) = Re(e ' (
=k

It n j. 27rfc(n“ i)x= cos(7r(n - 1) ±------------)
= cos(?r(n — 1)) cos K 4: sin(7r(n — 1)) sin K 
= cos(7r(n — 1)) cos K .

It follows that the real parts of DFT(y + k) and DFT(y - k)
are the same.

Continuing, let Im(z) denote the imaginary part of a complex
number z. Then,

K

■It 27rfc(n- Ik= - sin(7r(n - 1) ±------------ )
= —[sin(7r(n — 1)) cos K ± cos(?r(n — 1)) sin A] 
= T cos(ir(n — 1)) sin K .

In particular, the imaginary parts of DFT(^+fc) and DFT(y-fc)
have opposite signs. This shows that DFT(y-fc) and DFT(y +
fc) are complex conjugates, when N is even.

When m = y, one has

DFT(k = £i,„e-^V—
Z n=l

N

=
n=l

= yi - 2/2 + !/3 - !/4 + • • • + VN—I - VN ,

since is alternately +1 and -1.
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N odd Next, let N be odd. Write

= and
^ + (fc-l) = y + (fc-|).

Replacing k by k - | in the previous arguments completes the
proof. |
The next result relates the discrete Fourier transform to the
periodogram.

PROPOSITION Let z denote the complex conjugate of a complex number z.
Then,

yDFT(m) • DFT(m) = , m = l,... ,K .

PROOF Let K := , and recall that for complex numbers zi and z2,
zfz2 = zf • z?. Then,

^DFT(m) • DFT(m))

= y'^(am - ibm) • y (am - ibm)

1 . N . N= \le>K-^(am -ihm)e-,K — (am +ibm)Y £t
N >---------- — Jal, + 62 . |2 V m ' m • ■

the periodogram
in terms of
the DFT

Consequently, the periodogram can be written as

|(p^DFT(fc)-DFT(jt)j |fc = l........

time savings:
2 min 50 sec
versus
6 sec

Since the built-in MATLAB commands for implementing the
DFT are so efficient, computation of the periodogram via the
DFT provides a great time-savings. The MATLAB example at
the conclusion of this section first computes the periodogram
corresponding to a large data set (496 points) using the discrete
Fourier series approach, from Section 2.6. This took 2 minutes
and 50 seconds on the author’s computer. However, finding the
same periodogram by using MATLAB’s built-in commands for
the DFT, and exploiting the relationship between the DFT and
the periodogram, took only 6 seconds!
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MATLAB IMPLEMENTATION
Finding the Periodogram, using a fast Fourier transform

MATLAB
FUNCTION
pervfft(D)

The following MATLAB function finds the periodogram corre­
sponding to a data set (with the maximum allowable value of
A"), by using the built-in MATLAB fft command to find the
DFT, and then computing the values

|(p^DFT(Jb).DFT(4)J | * = 1,...,kJ .

To use the function, type:

[per,sqrcoef] = pervfft(D);

The name ‘pervfft’ stands for 1 periodogram via a fast Fourier
transform’.

required
input, D

The required input is a data set {(t,-,, with N > 3. The
time values must be stored in a column vector t and the cor­
responding data values in a column vector y. Then, D = [t y]
is the N x 2 matrix containing the data set. The time fist con­
tained in t must be uniform (increment AT > 0). The program
begins by checking that this requirement is met; if not, the
program is halted and the message ‘not a uniform time list’ is
displayed. (As written, increments between time values are
said to ‘differ’ if they differ by more than 0.0000001. This value
may be changed for different tolerances.)

outputs:
per
sqrcoef

The output per is a column vector containing the periods
P, y, f,... , £ , where P = TV AT.

The output sqrcoef is a column vector containing the numbers

yDFT(i)-DFT(i) = ^ + Jr

for k = 1.......K .

The periodogram is then obtained with the command:

plot(per,sqrcoef)
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function [per,sqrcoef] = pervfft(D)
t = D(:,l);
% First, check that the time list is uniform:
d = diff(t);
% entries that differ by more than .0000001 are called 'different
p = ( abs(ones(d)*d(l)  - d) > .0000001);
err = find(p);
if max(err) ~= 0

'not a uniform time list'
return

end
N = length(t);
dT = t(2) - t(l);
P = N*dT;
y = D(:,2);
K = floor( (N-l)/2 );
dft = fft(y);
dft = dft(2:K+l);
sqrcoef = sqrt(dft .*  conj(dft));
per = P*ones(K,l);
k = [ 1: K]';
per = per ./ k;

MATLAB
EXAMPLE

The following example gives a time-comparison between com­
puting the periodogram via the program in Section 2.6, and
via a fast Fourier transform.

% First, construct a large data set
t = [1:.2:100]';
y = sin((2*pi/7)*t) ;
length(t)

ans =

496

D = [t y];
% Use the discrete Fourier series approach, from Section 2.6
[per,sqrcoef] = dfs(D);
% That took 2 minutes and 50 seconds on the author's computer
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% Now, use the fast Fourier transform approach
[per2,sqrcoef2] = pervfft(D);
% That took 6 seconds!
% Here's the periodogram:
subplot(221)
plot(per,sqrcoef,'x')
hold

Current plot held

plot(per2,sqrcoef2,'o')



CHAPTER 3

FILTER THEORY
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3.1 Mathematical Filters
What is a
mathematical
filter?

A (non-mathematical) ‘filter’ is usually a mechanical device
used to process material, often to extract a particular compo­
nent, like only the finest particles in a granular sand mixture.
A mathematical filter is used for a similar purpose—to process
data in some desirable way. For example, filters are used for
removal of noise, smoothing, separation of signals, differentiat­
ing, and integrating.

analog
versus
digital
filters

Analog filters are used to process continuous signals, and digi­
tal filters are used to process discrete signals that are equally-
spaced; that is, data sets where the time list is uni­
form.

NOTATION
for
digital filters

Let (t/n) be a list of data values that arose from a data set with
a uniform time list. The list (yn) is assumed to be of the form
(yn)n=i or (yn)~=_M.
A digital filter is a function that acts on the list (yn), and
produces a new ‘filtered’ list, (fn), where

OO 00
fn = CfcJ/n-k + dkfn-k i

k=—oo k=—oo

and where ck and dk are real constants. For finite lists (t/n)^=1,
fn is defined if and only if

1 < n - k < N whenever ck / 0 .

filter
coefficients

The numbers ck and dk are called the filter coefficients. In
practice, all but a finite number of the filter coefficients are
zero, so that the sums are actually finite.

expression is
‘centered’ at yn

The subscripts n — k serve to ‘center’ the expression at yn, as
illustrated below. In the following diagram, all coefficients dk
are assumed to be zero.

fn

t
SUM

c2 ci co c-i c_2 filter coefficients

Vn—2 Vn—i Vn !/n+i l/n+2 list of data values

^n—2 ^n—1 ^n+1 ^n+2 time list

The data point (/n,t/n) corresponds to the filter point .
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NOTATION
for
digital filters
(continued)
current,
past, and
future values

nonrecursive
filters,
all dt = 0

When filter value fn is being computed, fn is called the cur­
rent filter value, and yn is called the current data value. The
numbers /n-t and j/n_*  , for k = 1,... ,oo, are called the past fil­
ter and data values, respectively. The numbers /„_*  and yn_k,
for k = -1,..., —oo, are called the future filter and data values,
respectively.
If all coefficients dk are zero, then only the data values yn are
used to compute the filter output. In this case, the filter is
called nonrecursive.

recursive
filters,
some dt / 0

If any of the coefficients dk are nonzero, then computation of
fn requires other filter values. In this case, the filter is called
recursive. In particular, if future values of the filter are used,
then a system of linear algebraic equations must be solved to
find fn.

Primarily nonrecursive digital filters will be discussed in this
dissertation.

EXAMPLE
Trapezoid Rule
for approximate
integration
is a
recursive filter

Let be a data set with a uniform time list having
spacing AT >0. If this data set arose by sampling from a
continuous function f, that is, if yn = f(tn), then one may wish
to use these values to approximate the integral

/ /WJu
dt for n = 2,... , N . (1)
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EXAMPLE
smoothing by 3’s

Let fn be the approximation to (1) that is obtained by using
the Trapezoid Rule for approximation (e.g., see [S&B, p.121]).
Set /i := 0. Then,

fn = ^T(yn + yn-i) + fn-i , for n = 2,... , N .
it

This is a recursive filter with c0 = cj = |AT, and with di = 1.
All other coefficients are zero.

Suppose one desires to ‘smooth’ a data set as follows. Given
three successive points (which, for convenience, are centered at
0),

(—AT, y_i), (O,yo), and (AT.yJ,

it is desired to ‘fit’ these three points (in the least-squares
sense) with a line /(t) = b + mt, and then use the midpoint
value y(0) = 6 as the ‘smoothed’ value.

/i(t) := 1 and f2(t) := t ,

‘-AT’ 'y-i'
t = 0 and y = yo

AT

r/i(-AT)i T 72(-at)' '-AT'
fl(t) := /i(0) — 1 and f2(t) := /2(0) = 0

L A(AT) J 1 L A(AT) J AT

[fi(0

and using the results from Section 2.2, one obtains



247

- 3 0
- [o 2(AT)2] y

b = (X'X^X'y

1
3 o 1 r i 1 1 1 'y-i'

- 0 1
2(AT)3 J [-AT 0 at] yo

. .
|(y-i +yo+ i/i)l

. 2AT (^1 ~ V-l) J

Then, y(0) = b = |(y_i + i/o + i/i) • Thus, the current filter value
is found by averaging the immediate past, current, and imme­
diate future data values. Generalizing this process gives the
filter

fn = z(l/n-i + yn + 1/n+l) .U
which is nonrecursive, with c_i = c0 = ci = |. Not surprisingly,
this filter is called a moving average filter, or smoothing by 3’s.

EXAMPLE
applying the
smoothing by 3’s
filter

A data set, generated by y(t) = t2 and then corrupted with noise,
is plotted below using the plot symbol ‘x’. The smoothing by
3’s filter is applied, and the filtered output is plotted with ‘o’.
Note that the filtered curve is certainly ‘smoother’, so the filter
is appropriately named. A better understanding of what this
filter does will come from studying its corresponding transfer
function in Section 3.2.

smoothing by 3’s filter

data set, ‘x’

output, ‘o’
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the
filter lag
problem

window of
coefficients

a note
regarding the
filter coefficients

a MATLAB
function for
applying
nonrecursive filters

Consider applying the smoothing by 3’s filter to the data values
from a finite data set {(<», . Since computation of filter
value fn requires knowledge of the values yn-i, yn and 1/n+i,
it is not possible to compute fa (since y0 is unknown) or fay
(since y^+i is unknown). This inability to get filter output cor­
responding to the entire data set becomes worse as the number
of nonzero coefficients in the filter increases.

In filter literature, the smoothing by 3’s filter is often described
via the phrase: ‘we axe looking at the data through the window
[3 I |]’- One imagines this ‘window’ moving successively to
the right through the data values, producing the filtered values,
as illustrated below.

[1 1
3 |] [5 1

3 11
yi 2/2 2/3 !/4 3/5 • • • z/n-l Vn 2/n+l

Suppose that the sum of the filter coefficients for a nonrecursive
filter is 1, that is,

52 c* = 1 •
k

(This is true in the previous example, since |+|+| = 1 .) Then,
when a constant function yn := K is input to the filter, the same
constant emerges as the filter output:

fn = = £>(#) = K^ct = K(l) = K .
k k k

A MATLAB function for applying nonrecursive filters is given
next. It is assumed that the nonrecursive filter is of the form

K
fn — } CkVn—k

k=-K

for a positive integer K ; some of the coefficients c*  may equal
zero. There are 2K+1 filter coefficients: cK,... .cj.co.c.i,... ,c_K.
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MATLAB IMPLEMENTATION
Applying a Nonrecursive Filter

The MATLAB function nonrec applies the nonrecursive filter

K
fn — ckVn-k

k=-K

to the data values in a data set D. The filter coefficients are
stored in a column vector FC.
To use the function, type:
[f tf] = nonrec(D.FC);

• A data set {(/,-, is required, with a uniform time list.
Here, AT is a positive integer that gives the number of data
points.
The time values axe stored in an TV-column vector called
t, and the corresponding data values axe stored in an N-
column vector called y. Then, D = [t y] is the N x 2 matrix
containing the data set.

K coefficients

K coefficients
• The 2A+1 real number filter coefficients ck, ..■ , ci, c0, c_i,..., c_«-

must be stored, in the indicated order, in a column vector
called FC (for ‘Filter Coefficients’). Here, A is a nonnega­
tive integer.

• It must be the case that N > IK if any filter output is to
be observed. Otherwise, the output matrices f and tf will
be empty.

OUTPUT The function outputs 2 column vectors, f and tf .
The vector f contains the filtered output. Filtered output fn
corresponds to data value yn .
The vector tf contains the time values for the filtered output
(tf stands for ‘time for filtered output’). Filtered output fn
corresponds to time value tn .
The first and last K values in y cannot be processed, due to
filter lag. Therefore, the length of f (and tf) is N - 2K .

MATLAB
function
nonrec(D.FC)

REQUIRED
INPUTS

ti yi
tz y2

CK

: : ci
tn yn Cq

: : C-1

: ’■ k
: c-k.

In yN
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plotting the
original data
versus the
filtered data

The original data can be plotted versus the filtered data with
the commands:
plot(t,y,’x’)
hold
plot(tf,f,’o’)

source
code

The source code for the function nonrec is given next.

% Copyright 1994 Carol J.V. Fisher
function [f,tf] = nonrec(D,FC)
t = D(:,l);
y = D(:,2);
N = length(y);
% There are 2K+1 filter coefficients.
K = (length(FC) - l)/2;
if K ~= floor(K)

'There must be an odd number of filter coefficients'
end
% Initialize the matrix to hold the filtered output.
f = zeros(N-2*K,1) ;
for n = K+1:N-K

f(n-K) = sum( FC .*  y(n-K:n+K));
end
tf = t(K+l:N-K);

EXAMPLE The next example illustrates the use of nonrec. A noisy data
set is constructed. Three filters are then applied:
• the smoothing by 3’s filter (with window |[1 1 1]);
• the smoothing by 5’s filter (with window |[1 1 1 1 1]); and

the
• the smoothing by 7’s filter (with window |[1 1 1 1 1 1 1]).
Observe that the filtered data does appear to become increas­
ingly ‘smoother’. Also notice the increasing filter lag problem.
A further understanding of these filters comes from studying
their corresponding transfer functions, which is the subject of
the next section.
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t = [-5:.2:5]z;
y = sin(2*pi*t/10) ;
noise = rand(t) - .5;
y = y + .5*noise;
subplot(221)
plot(t,y,zxz)
D = [t y];
[fl tfl] = nonrec(D,[1/3 1/3 1/3]z) ;
plot(tfl,fl,zoz)
[f2 tf2] = nonrec(D,[1/5 1/5 1/5 1/5 1/5]z);
plot(tf2,f2,zoz)
[f3 tf3] = nonrec(D,[1/7 1/7 1/71/7 1/7 1/7 1/7]z);
plot(tf3,f3,zoz)
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3.2 Transfer Functions

nonrecursive
digital fitters

In this section, the nonrecursive digital filter

K
fn= 52 c*̂- ‘ (NF)

k=-K

is investigated, where K is a positive integer, and the filter
coefficients ct axe real numbers.
Under certain symmetry requirements on the coefficients ct,
the action of this filter on sums of sinusoidal components is
easily explained, via the transfer function corresponding to the
filter. The development of the transfer function calls on the
linear algebra concepts of eigenvalues and eigenvectors, so a
quick review is in order:

vector spaces
and linear
transformations
are reviewed in
Appendix 2

Vector spaces and linear transformations between vector spaces
are reviewed in Appendix 2. The definitions of eigenvalue and
eigenvector are given next.

DEFINITIONS
eigenvalue;
eigenvector

Let V be a vector space over F, and let T be a linear transfor­
mation from V into V.
An eigenvalue of T is a scalar A g F for which there exists a
nonzero vector v G V with Tv — Xv.
If A is an eigenvalue of T, then any nonzero vector v satisfying
Tv = Av is called an eigenvector of T corresponding to A.

the action ofT
on its eigenvectors
is just scalar
multiplication

It is important to observe that the action of T on its eigen­
vectors is particularly simple—it is just scalar multiplication.
That is, the linear transformation T maps an eigenvector v to
the scaled vector Av. Note also that any eigenvalue of a linear
transformation between real vector spaces is, by definition, a
real number.

EXAMPLE
the vector space
ROO

Let R00 denote the set of ‘doubly infinite’ lists with a designated
origin; i.e., each member of R°° is of the form

where j/f G R for all integers i, and the element indicated by
the ‘ * ’ is the origin. The ‘origin’ is needed for a well-defined
addition on R°° , and will only be shown when necessary.
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addition and
scalar
multiplication
in R°°

every finite list
of data values
can be viewed
as an element
in R°°

a nonrecursive
filter is a linear
transformation

For an element of R°°, define multiplication by a g R via

«(••• •■= (... ,ay-i>ayb,ayi,...) .

Addition in R00 is defined by first aligning the origins of the
elements being added, and then adding componentwise:

(• • • > 1, ^"0> •••)

+ (•••, !/-i. yb, yi, •••)
= (..., x-i+y-i, io'+'i/o, + yi, •••) .

With this addition and multiplication by real numbers, R°° is
a real vector space.

In preparation for viewing the nonrecursive filter (NF) as a lin­
ear transformation between vector spaces, it is first necessary
to view finite input lists (yn) and output lists (/n) as elements
of R°°.

Every finite list (yn)£=i of data values can be associated with
an element of R°° by ‘padding it with zeros’ in both directions,
and designating 2/1 as the origin; that is,

(1/1,112,••• >!/n) •-*■(•••  ,0,0,0,yl,y2, • -• ,yjv, 0,0,0,...) .

Once this association with an element in R°° is made, there is
no longer a ‘filter lag’ problem: that is, filtered values /,• can
be found for all integers i. In this way, one has the following
input and output lists in R°°:

(••• , 0, 0, yi, y2, ... , vn, 0, 0, ...)
(••• > /-I, fo, fl, f2, , fit, fx+1, fN+2, •••)

Note that fn will be zero, for values of n that are sufficiently
large, and sufficiently negative.

Next, the nonrecursive filter (NF) is used to define a transfor­
mation from R00 to R°° , and it is shown that this transforma­
tion is linear. In the following discussion, it is assumed that
the (finite) list (yn)* =1 and the filter list (fn) are associated with
elements in R°° , as discussed above.
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the map F
that takes a
daia list (yn') to
its corresponding
filtered list (Jn)
is linear

Let F: R00 -*  R00 be defined by F(y) := f, where y := (yn) is a
list of data values, and f := (/„) is its corresponding list of filter
values, with

K
fn = * ^kVn—k • (1)

k=-K

For the remainder of this section, the entry fn of F(y) is option­
ally denoted by F(y)n, the entry yn of y by yn, and the sum

K
52 by 52- With this notation, the sum in (1) is rewritten as

k=-K k

r(y)n = y2Cfcy"-fc ■
k

F is linear

input the list
(eiunAT) to
the filter

Let x = (inl^-co and y = (j/n)“=-oo be elements of R°° . Then,

F(x + y)n = 52 c*( x + y)n-k
k

= 52 CfcXn-t + 52 c*y«-k
k k

= F(x)n + F(y)n ,

which implies that F(x + y) = F(x) + F(y). Also, for a e R,

F(ax)n = 52Ci(ax)’»-t = «52CjfcXn-*  = aF(x)n >
k k

which implies that F(ax) = aF(x). Thus, F is a linear operator
from R°° to R°° .

Let AT be a positive real number, and let u e R.
As a motivation for later results, define a list eu via

(ew)„ := e’wnAT .

The sketch below illustrates some fist entries when u > 0.
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Use eu as the input list to the nonrecursive filter (NF). In so
doing, one obtains the output list (/n), where

fn = 22c‘(^)n-‘ = 22c‘eMn“t)AT
k k

= 52Cte'WnATe-,U,fcAT = ( £2c*e““‘'iAT ) eiu"* AT
k \ k /

:= C • (eu>)n i

where C := cte-,u'fcAT. Thus, when the list ew is input
to (NF), the filtered list Ceu emerges. In general, C may not
be a real number. However, the next result shows that under
certain symmetry requirements on the filter coefficients c*,  C
will be real:

LEMMA Let Q, — K < k < K, be real numbers satisfying

Ct = c_t for k = 1,... ,K .

Then, the number

K
C .= 22 c^~iuk^T

k=-K

is real, for all real numbers u and AT.

PROOF

K K -K
22 cte-i“fcAT = co + 22cfce-i“tAT+ 22 cke-iukAT

k=-K k=l k=-l
j:=-k

K K
= Co + £ cfce-“tAT + £ c_je'u^T

k=l j=l

= co + 22 cke~iuk^T + 22 Cjeu^T
k=l j=l

= c0 + f;ci(e-<“tAT + e<“^T)

Jb=l
K

= co + 22 c* cos(wfc AT)) ,
t=l

which is a real number. |
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DEFINITION
symmetric
nonrecursive filter

A nonrecursive digital filter

K
fn = CkVn-k i

k=-K

for which a = c-t, k = 1,... , K, is called symmetric.

PROOF

The next result shows that any nonzero list in R00 that is formed
by evaluating the functions sin(wZ) and cos(wt) at the time values

(... ,ti-2AT)f1-AT,^,ti + AT,ii+2AT,...) ,

where ii G R, AT > 0, and w G R, is an eigenvector for the linear
transformation F: R°° —► R°° defined in (1), providing that the
nonrecursive filter used to define F is symmetric’.

THEOREM Let ti G R, AT > 0, and w G R. Form lists

(sinw(<i + nAT))“=_oo and (cos+ nAT))“=_oo (2)

in R°° by evaluating the functions sinwt and coswi on the time
list

(... )ii-2AT)ti-AT1ti,h + AT,ti + 2AT,...) .

Assume that ti, AT and w are such that the fists in (2) are
nonzero.
Then, the lists in (2) are eigenvectors for the linear transfor­
mation F: R°° -» R°° defined by the symmetric nonrecursive
filter

K
fn= 52 ' Cfc = c_fc for fc = 1.......K .

k=-K

Both lists have corresponding eigenvalue

K
„ -iuk&T? , c*e

k=-K

The following argument uses the facts that for all z, w G C and
for all a, (3 G R,

Re(az + /3w) = aRe(z) + /?Re(w)
Im(az + /3w) = alm(z) + /3lm(w) , 
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where Re(z) and Im(z) denote the real and imaginary parts,
respectively, of a complex number z.

and recall that C is a real number, since c* = c_* for k = 1 K.

Define
K

C:= cke~iukAT ,
k=-K

Then,

Also define
S := (sinw(ii + nAT))“=_M ,

so that
Sn = sinw(/i + nAT) .

F(S)n = J2cfcsinw(ti + (n - fc)AT)
k

= ^cJm(e,w<‘l+(n-fc)AT))
k

= Im f
\ k J

~ Im ( J2cie‘w(‘1+nAT)e“fu'fcAT ]
\ k /

(real number >

eiU{tl+n^T)^Cke-iuk^T

k

= C ■ Im(eiu'(t*+nAT))
= C • (sinw(ti + nAT))
= C-Sn .

It follows that F(S) = CS. Thus, S is an eigenvector for F with
eigenvalue C.
By defining

C := (cosw(<i +nAT))“=_oo ,

and replacing S by C, sin by cos, and Im by Re in the argu­
ment above, it follows that C is also an eigenvector for F with
eigenvalue C. I
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information
given by the
transfer function

DEFINITION
transfer function
for a symmetric
nonrecursive filter

Let F be the symmetric nonrecursive filter given by

K
fn — Cfcl/n—fe > Cfc — C— fc for k — 1,... , K .

k=-K

Let AT be a fixed positive number. The function H: R -+ R
defined by

K K
H(u):= £ c*e-" iAT = c0 + ^2 2cjt cos(wfcAT)

k=-K k=l

is called the transfer function corresponding to F and spacing
AT.

The transfer function has the property that when the functions
sinwi or coswi are sampled at the equally-spaced time values
(... ,ti - - AT,ti,ti + AT.ii + 2AT,...), and then input to
the symmetric nonrecursive filter, the same lists emerge, except
scaled by the constant H(w).
Since F is linear, if a sum of sinusoidal components is input
to F, then the same sum will emerge, with each component
appropriately scaled. The examples following the next lemma
illustrate this process.

PROOF

LEMMA
H has
period

The transfer function H of the previous definition has period
2%
AT *

K ,_____ s
_ z. z.-»w*AT

k=-K

= . |

Thus, it suffices to study the transfer function H on any interval
of length , say the interval [0, .



259

= H{2irf)

EXAMPLE
transfer functions
for the
smoothing by K’s
filters, where
K >3 is an
odd integer

Let K > 3 be an odd integer. Let K = 2m + 1 for a positive
integer m. The smoothing by K’s filter,

1 m
fn = 5 * Vn-k >

4=—m

has coefficients

1m — •••—’ C—i — Co — Ci — • • • — cm — ,

The corresponding transfer function is
m

H(w) = c0 + 2ck cos(wfcAT)
4=1

1 / m \
= — i + 2 Vc°s(wfcAT) .

K \ tel /

rewriting the
transfer function
in terms of
cyclic frequency:

The positive number w gives the radian frequency of the func­
tions sinwt and coswf. It is usually more convenient to work
with the transfer function expressed in terms of cyclic fre­
quency /, where w = 2irf. To this end, define a function H
by

H(f) := H(2irf) = H(w) .

Therefore,

K K
H(f) = V cfce-,2x/iAT = Co + 52 2c* cos(27r/fcAT) .

k=-K 4=1

H
has period

Since H has period it follows that H has period :
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H is
only graphed
on [°> 5Zt]

With a sample spacing of AT, it is unreasonable to try and
detect periods less than 2AT, since these smaller periods are
‘confused’ with larger ones due to the effects of aliasing (see
pages 91-93 and the sketch below). For this reason, the func­
tion H is only graphed, in practice, on the interval of cyclic

ONLY PERIODS GREATER THAN 2AZ
CAN BE DETECTED

graphs of
H for the
smoothing by K *s
filters

The functions H corresponding to the smoothing by K’s filters
are graphed next, for various values of K and AT.

the ‘smoothing
by K’s’filters
are low-pass filters

The graph below illustrates why the smoothing by K’s filters are
commonly referred to as low-pass filters: they tend to pass low
frequencies (H(f) is close to 1) and suppress high frequencies
(H(f) is close to 0).

smoothing by 3 ’s filter, ’

smoothing by 5’s filter, ‘’

smoothing by T’s filter, ‘o’

smoothing by 11 ’s filter, ‘x’
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smaller sampling
time allows
detection of
higher frequencies

The graph below illustrates that a smaller sampling time AT
allows detection of higher frequencies (smaller periods). For
example, the function H corresponding to AT = 0.2 gives infor­
mation about frequencies in the interval [0,2.5], whereas when
AT = 1, information is only obtained on the interval [0,0.5].

smoothing by 5’s filter

AT = 0.2, ’

AT = 0.5,
AT = 1, ‘o’

When K is large, the smoothing by K ’s filter does a better job of
erasing high frequencies. For example, the graph below shows
one full period of the transfer function corresponding to the
smoothing by 21 ’s filter, with sample spacing AT = 1.

ONE FULL PERIOD OF THE
SMOOTHING BY 21’s

TRANSFER FUNCTION,

SPACING AT = 1
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EXAMPLE
understanding
the information
given by the
transfer function

The transfer function for the smoothing by 5’s filter, AT = 1, is
graphed below. Observe that H(.2) = 0, and H(.l) « .65.
Construct a list (y„) by evaluating the function

f(t) = sin(2jr(.2)t) + 4 cos(27r(.l)i) 

at each number in the uniform time list (AT = 1)

(0,1,2,... ,20) .

The function f has a component of cyclic frequency 0.2 (period
5), amplitude 1; and a component of cyclic frequency 0.1 (period
10), amplitude 4.
When the list (yn) is input to the smoothing by 5’s filter, the
period-5 component should emerge, scaled by H(.2) = 0; that
is, it should be completely erased.
The period-10 component should emerge, scaled by #(.l) «
0.65; thus, its new amplitude should be approximately (.65)(4) =
2.6.
The graphs below illustrate that the filter behaves as dictated
by its transfer function.

AFTER FILTERING WITH
THE SMOOTHING BY 5’s FILTER

4

2

0

-2

-4
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EXAMPLE As a second example, the transfer function for the smoothing
by Il’s filter, with AT = 0.2, is graphed below. Observe that
H(.2)« 0.7.

smoothing by 11 ’5 filter

AT = 0.2

Construct a list (yn) by evaluating the function

/(i) = sin(27r(.2)<)

at each number in the uniform time list (AT = 0.2)

(0,0.2,0.4,... ,20) .

The function f has cyclic frequency 0.2 (period 5), and ampli­
tude 1.
When the list (yn) is input to the smoothing by Il’s filter, it
should emerge, scaled by H(.2) « 0.7.
The graph below illustrates that the filter behaves as dictated
by its transfer function.

DATA SET, ‘x»
FILTERED DATA, ’o’
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A MATLAB program for finding the transfer function corre­
sponding to a symmetric nonrecursive filter, and spacing AT,
is given next.

MATLAB IMPLEMENTATION

Finding the Transfer Function for a Symmetric Nonrecursive Filter

The MATLAB function transfct, with source code given below,
computes the transfer function H corresponding to a symmetric
nonrecursive filter

K

fn — ) ^kyn—k > ct = for k — 1,... , K ,
k=-K

and spacing AT.
To use the function, type:
[Hf,f] = transfct(C,dT);

The transfer function is then plotted with the command:
plot(f, Hf)

The function requires the following inputs:
• The K +1 distinct filter coefficients,

co,ci,... ,ck .

These must be stored in the (row or column) vector c.
• The spacing AT, where AT > 0; this is given by the MAT­

LAB variable dT.

The program outputs two column vectors, Hf and f.
The vector f contains 100 equally-spaced values from the in­
terval [0, .
The vector Hf contains the values .

The source code for the function transfct is given next:
% This computes ths transfer function for a symmetric nonrecursive filter

% Get[100Cpoints’/equally spaced in the period (O,l/(2*dT)]
f ■ linspace(0,l/(2*dT) ,100)';
K - length(C) - 1;
Hf ■ zeros(f);
f°Hfk-*Hf :J c(k+l)*cos(2*pi*k*dT*f) ;

endHf - C(l) + 2*Hf;

MATLAB
function
transfct(C,dT)

REQUIRED
INPUTS

OUTPUTS

source code
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The following diary of an actual MATLAB session illustrates
the use of transf ct. The function nonrec, for applying a non-
recursive filter, was discussed in Section 3.1.

MATLAB
EXAMPLE

% Construct a transfer function:
FC = [3 2.6 -1 1 -1 2.6 3]*(l/10.2);
FC = FC';
% Since the filter coefficients sum to 1, constants are passed perfectly.
% C must contain the distinct coefficients co cl c2 c3 :
C - [1 -1 2.6 3]*(l/10.2) ;
% Find and graph the transfer function for spacing 0.5 :
[Hf,f] = transfct(C,.5);
plot(f,Hf)
grid
% Inspect the values of the transfer function:
[f Hf]
ans -

0 1.0000
0.0101 0.9964
0.0202 0.9857
0.0303 0.9678•

0.1111 0.5984
0.1212 0.5293
0.1313 0.4567

0.1717 0.1426
0.1818 0.0612
0.1919 -0.0202
0.2020 -0.1009
0.2121 -0.1803

0.5455 -0.1188
0.5556 -0.0529
0.5657 0.0124
0.5758 0.0763

% Observe that frequencies of approximately .2 and .55 are 'erased'.
% Frequency .12 is scaled by .5 .
% Construct a 'known unknown' for spacing .5 :
y - 4°+2*cos(2*pi*.2*(t-7) ) - 3*sin(2*pi*.55*(t+8) ) - cos(2*pi*.12*t) ;
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plot(t,y)
grid
hold
Current plot held
% Now, filter the data set:
[fil,tfil] = nonrec([t y],FC);
plot(tfil,fil,'o')
% As expected, mainly the frequency .12 component emergesI
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3.3 Designing and Improving Filters

Introduction The previous section investigated the problem: given a sym­
metric nonrecursive filter, find its transfer function. The cur­
rent section shows how to go from a desired transfer function
to a symmetric nonrecursive filter. The Fourier series of the
desired transfer function plays an important role in this pro­
cess.

complex
Fourier series

Continuous Fourier series results were reviewed in Section 1.6.
For the current purpose, it is easiest to employ the equivalent
complex form of the Fourier series. The relevant results axe
summarized below. The interested reader is referred to [Ham,
95-99] for additional information.

COMPLEX
FOURIER
SERIES

Let g be a periodic real-valued function of one reed variable.
Suppose that g is piecewise continuous on R, and has funda­
mental period P.
The complex Fourier series of g, denoted by Four (3), is the
infinite sum

Four(<7)(t) := £ Ckei3& ,
k=-oo

where
Ck = ~ [ e-i2V-g{t}dt .

The coefficients Ck are related to the coefficients ak and bk
(page 81) by

Ct = °(-t) + .V» fort<0t
At

r _ “0Co-y,

Ck = ^=^- for fc > 0 .

if g is even,
then all
Ck are real, and
Ck = Q-t)
for all k

If g is an even function = g(t) for all i), then bk = 0 for
1 < k < oo, and hence

[ for k < 0Cl = < *
1 for k > 0 .

In particular, if g is even, then all values of Ck are real numbers,
and Ck = C(-k) for all integers k.
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rewriting the
transfer function
H

In order to compare a transfer function H (as a function of
cyclic frequency) with its complex Fourier series representa­
tion, it is rewritten as follows:

K

(1)

-K
H(f) := cke~i2*k'* T = £ c(_0e<2’"AT (/ := -k)

k=-K l=K

= Z .

k=-K

the complex
Fourier series

Recall from the previous section that H has period . There­
fore, the complex Fourier series for H is given by

Four(#)(/) = f; Cke^ = Ckei2*ki*T . (2)
fc=—oo k=-oo

By comparing (1) and (2), it is apparent that the truncated
Fourier series will approximate the transfer function, provided
that Ck = c(_fc) for fc = —K,... ,K .

The procedure for finding filter coefficients from a given (de­
sired) transfer function is summarized next:

PROCEDURE: •
finding
filter coefficients
from a given
transfer function;

extend H •

Let AT be a given positive number, representing the uni­
form spacing in the time list of a data set to be processed.
Let H denote a desired transfer function on the interval of
frequencies [0,557] •

Extend H to [-5^, 5^] via

H(-t) = H(t) for t e [O.r-ij .

(See the diagram below.) Call this extension by the same
name.
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the extension «
is an even function

• Extend H periodically to all of R. (See the diagram below.)
That is, define

+ := *(<)

for all integers k, and for all t e 2Zt3" Call this exten­
sion by the same name. The resulting function H is even,
with fundamental period .

computing Ct •> Since H is even, its complex Fourier series coefficients Ck
are real numbers, and Ck = C(_k) for all integers k. For
k>0,

~ akCk = -£- ,2
where

ak- [ H(f) cos df (see p. 81)
Jp r

= 2&T H(f) cos(2irkf&T) df (P = ^-)

= 4AT H(f) cos(27rfc/AT) df (H is even) (3)
Jo

computing the •
filter coefficients

For a positive integer K, the coefficients ck given by

ck — c_k = Ct for k = 0,... , K

will give a symmetric nonrecursive filter

K
fn = ckVn—k

k=-K

with a transfer function that approximates H(f). In gen­
eral, the greater the value of K, the better the approxima­
tion.
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EXAMPLE
designing a
band-pass filter

The procedure just described is illustrated next. Let AT = 0.5,
so that 2^? = 1. A transfer function is desired that will pass
the frequencies in an interval [d-5,d+5] c [0, , and suppress
all other frequencies. Such a filter is called a band-pass filter.
The desired transfer function is shown below on [0, •

*#(/)

0.5

d-8 d d + 6

Using (3),

ak = 4AT H(J) cos(2ttVAT) df

= 4(0.5) / H(/)cos(27rfc/(0.5))tf
Jo

rd+6
= 2 (l)cos(fc7r/)d/

Jd—6
<)

= -—[sin(&7r(d + 5)) — sin(fc7r(d — 6)] , for k > 0 .
K7T

Also,
a0 = 4AT / (1) df = 4(0.5)(25) = 45 .

Let d = 0.3, 5 = 0.1, and K = 10. The resulting symmetricK = 10
nonrecursive filter has coefficients:

/ _ x_/a° ai ai0'1(co, ci,... ,, Cio) — '2’2....... 2
« (.2, .1156, -.0578, -.1633, -.1225,0, .0816, .0700, .0145, -.0128, 0) .
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7< = 20

improving the
transfer function;
Lanczos
smoothing

The transfer function for this filter is shown below, superim­
posed with the ‘ideal’ transfer function.

Now, increase K to 20, keeping all other parameters the same.
The transfer function of the resulting symmetric nonrecursive
filter is shown below, superimposed with the ‘ideal’ transfer
function.

The ‘ripples’ that appear in the transfer functions can be ‘smoothed’
by a process called Lanczos smoothing. Lanczos is credited with
observing that the ‘ripple’ in a truncated Fourier series has ap­
proximately the period of the last term kept in the series. He
argued that smoothing the partial sum by integrating (aver­
aging) over this period would remove the main effects of the
ripple. This procedure is discussed next. The interested reader
is referred to [Ham, 109-112] for additional information.
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the truncation,
T(f)

sigma factors

Consider the truncation

T(f) := £ Ckei2*k'* T
k=-K

of the infinite sum

Four(#)(/) := Ckei2',kJCkT .
k=-oo

The last terms kept correspond to indices k = K and k = — K,
with corresponding period Define a ‘smoothed’ function
S(/), obtained by replacing the number T(/) with the average
value of the function T over an interval of length centered
at /:

K

rei(%fc/K) _e-i^k/Ky

2i

= Y,c‘

k=-K

'sin(7rfc//<)l i2TkJ£kT
■nk/K

■/ + 5KW e.-21rt/AT df

k=-K •'i-irrsr

= K^T Y ^l ei2Tk^T

S^irkATk——K

= K O-ei2*k'* T sin^k/K)
k=—K ™

K

1 f J + 3KAT

Observe that in the resulting function S(/), the fcth term of T(/)
has been scaled by the number

sin(7rAr//<)
irk/K ’

These scaling factors are commonly called the sigma factors.
Observe that

sin(7r(-fc)//<’) _ -sin(7rfc/-K) _ sin(7rfc//<)
Tr(-fc)/7< “ -irk/K ~ nk/K '
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Also, when k = 0, the sigma factor is defined to equal 1, since

lim
k—o

sin(irk/K)
irk/K = 1 .

The distinct values of the sigma factors are shown below, when
K = 10:

k sigma factor

0 1
1 0.9836
2 0.9355
3 0.8584
4 0.7568
5 0.6366
6 0.5046
7 0.3679
8 0.2339
9 0.1093
10 0

EXAMPLE The transfer functions of the previous example, after Lanczos
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MATLAB IMPLEMENTATION

Finding a Symmetric Nonrecursive Filter
Corresponding to a Desired Transfer Function

MATLAB
function
findfil

The MATLAB function findfil, with source code given on the
following page, computes the coefficients of a symmetric non-
recursive filter corresponding to a desired transfer function.
To use the function, type:
fC,Hf,f] = findfil(tH,H,K,dT,smooth);

REQUIRED
INPUTS

The required inputs are:
• A positive number AT that represents the uniform spacing

in the time list of a data set to be processed. The MATLAB
variable dT contains the desired value of AT.

• A description of the desired transfer function on the in­
terval [0,. The description must be contained in two
column vectors, tH and H, of equal length: the column vec­
tor tH contains equally-spaced entries from the interval
[0, 2at]> an<l H contains the corresponding desired values of
the transfer function.

• K is a positive integer that gives the last term to be kept
in the truncated Fourier series. The resulting nonrecursive
filter will have K + 1 distinct filter coefficients, c0,ci.......cK .

OPTIONAL
INPUT

• If Lanczos smoothing is desired, set smooth = 1. Any other
value for smooth, or removing this variable from the input
list, gives an unsmoothed filter.

OUTPUTS The function outputs three column vectors, C, Hf, and f.
• The column vector C contains the K +1 distinct coefficients

c0,ci,... ,cr of the corresponding nonrecursive filter.
• The column vectors f and Hf contain the information nec­

essary to plot the transfer function corresponding to the
nonrecursive filter (which is an approximation to the de­
sired transfer function). This approximation can be plot­
ted, superimposed with the actual transfer function, via
the commands:
plot(f.Hf)
hold
plot(tH,H)
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The source code for the function f indf ii is given next:

function [C,Hf,f] = findfil(tH,H,K,dT,smooth)
if nargin==4

smooth = 0;
end
N = length(tH);
P = tH(N);
C = zeros(K+1,1);
C(l) = (1/N)*sum(H) ;
for k = 2:(K+l)

tvec = (2*pi*(k-l)*dT)*tH;
cosv = cos(tvec);
C(k) = (l/N)*sum(H  .*  cosv);

end
if smooth==l

k = [1:K]';
k = pi*k/K;
sigma = sin(k) ./ k;
C(2:K+1) = sigma .*  C(2:K+1);

end
[Hf,f] = transfct(C,dT);

MATLAB
function
symtofc

The MATLAB function symtofc symmetric to filter coefficients'')
converts the K +1 distinct coefficients c0,ci,... ,ck from a non-
recursive symmetric filter, to the full set of coefficients

C-K,--- ,C-l,Co,Ci,... ,ck

(where c_*  = c*)  , for use in the function nonrec.
To use the function, type:
FC = symtofc(C);

function FC = symtofc(C);
K = length(C) - 1;
FC = flipud(C(2:(K+l)));
FC = [FC;C];

INPUT
and
OUTPUT

The input is a column vector C containing the coefficients co, cj,..., ck .

The output is a column vector FC containing the full set of
coefficients c_k,... ,c_i,co,ci,... ,cr ■
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EXAMPLE
designing a
low-pass
filter

The following diary of an actual MATLAB session illustrates
the use of the functions findfil and symtofc. Here, a low-
pass filter (which passes low frequencies, and suppresses high
frequencies) is designed, corresponding to spacing AT = 1. The
designed filter is then used to process a ‘known unknown’.

% Construct the desired transfer function:
tHl - [0:.01:.10]';
tH2 - [.ll:.oi:.5]';
yl = ones(tHl);
y2 = zeros(tH2);
tH - [tHl;tH2];
H - [yl;y2] ;

% Graph the desired transfer function:
plot(tH,H)

% Find a corresponding unsmoothed filter, dT ” 1, K ■ 10:
[C,Hf,f] - findfil(tH,H,10,l);

% Plot the transfer function of the corresponding filter,
% superimposed with the ideal transfer filter:
plot(f,Hf)
hold
Current plot held
plot(tH,H)
hold
Current plot released
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% Now, find a corresponding smoothed filter, dT “ 1, K « 10:
[C,Hf,f] - findfil(tH,H,10,l,l);
plot(f,Hf)
hold

Current plot held

plot(tH,H)
hold

Current plot released

c
% Here are the smoothed filter coefficients c0,cl,...,cl0 :
c =

0.2157
0.1978
0.1506
0.0905
0.0359
0.0000

-0.0143
-0.0129
-0.0055
-0.0002
0.0000

t - [1:40]';
y - sin(2*pi*.3*t) ;
plot(t,y)
hold
Current plot held
plot(t,y,'x')
FC - symtofc(C);
D - [t y];
[f,tf] - nonrec(D,FC);
plot(tf,f,'o')
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The following flowchart, which also appears in the preliminary pages of this
dissertation, suggests a strategy for analyzing a data set. This section contains
examples illustrating the application of the procedure presented here.
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function Dr = delnan(D)
% This function removes the NaNs from a data set, D
Dcol = D(:,2) ;
i = find(isnan(Dcol));
Dr = D;
for j = 1:(length(i));

Dr( i(j),: ) = [];
i = i-1;

missing values
in a data set;
MaH,
Not A Number

Data sets sometimes have missing values. Such entries can be
represented via the MATLAB matrix entry Hal (‘Kot a Humber’).
However, any arithmetic calculation using a Mai yields lai as
the final result. Therefore, HaM entries must be removed or
replaced by interpolated values before any processing can be
done on a data set.
The following MATLAB function can be used to remove or­
dered pairs of the form (t.HaH) from a data set.

MATLAB
FUNCTION
delnan

The MATLAB function delnan (‘delete not a number’), with
source code given below, removes the Hal values from a data
set D. To use the function, type:
Dr = delnan(D);

INPUT
and
OUTPUT

The input is a matrix D; the first column of D contains the
time values of data points, and the second column contains
the corresponding data values. Thus, each row of D is a data
point.
The output is a matrix Dr that is identical to D, except that
rows of the form (t.Hal) have been removed.

source code
for delnan

The source code for delnan is given below:

end

The use of delnan is illustrated in the next example.
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EXAMPLE 1 The data set graphed below gives the total daily attendance in
three undergraduate classes taught by the author during the
Fall 1993 semester at Idaho State University. Two sections of
Math 111 (Algebra) and one section of Math 120 (Calculus
for the Life and Social Sciences) were taught. Each class met
four days per week: Monday, Tuesday, Wednesday, and Friday.
The data values recorded as Mai represent days when classes
did not meet. This data set is stored in a MATLAB matrix
D. The symbols M, T, W, F (the days of the week that classes
met) are shown below only for the reader’s information, and
axe not included in the matrix D.

D =

M 1 136
T 2 111 Data Set with ‘Not a Number’ Entries
W 3 114
F 4 108
M 5 108
T 6 105
W 7 114
F 8 96
M 9 NaN
T 10 105
W 11 109
F 12 114
M 13 108
T 14 94
W 15 106

140

120

100

80

60

Total Daily Attendance
JC X X

xxxx x
x x/xxxV X

XXX Xx X_ x A XX _
xx xcx

---------- 1---------- I—x-------- LX--------
0 20 40 60 80
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remove lai's
from the data set;
Dr
tr
yr

First, the MATLAB function deinan is used to remove the
lai entries from D. The resulting matrix is named Dr (‘r’ for
‘removed’). The first column of Dr is named tr, and the second
column is named yr.
Observe that row 9 of D, which contained a Hal entry, has been
removed.

Dr = delnan(D);
tr = Dr(:,l);
yr = Dr(:,2);

Dr =

1 136
2 111
3 114
4 108
5 108
6 105
7 114
8 96

10 105
11 109
12 114
13 108
14 94
15 106

Data Set with ‘Not a Number’ Entries Removed
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fit Dr
with a parabola

The ‘downward trend’ in the data is quite striking, so linear
least-squares approximation techniques (p. 150) axe used first
to fit the matrix Dr = [tr yr] with a parabola. The parabola
component obtained is named yl:

fl = ones(tr);

f2 = tr;
f3 = tr.A2;
X = [fl f2 f3];
b = (X'*X)  \ (X'*yr)

b =
116.7717
-1.1486
0.0068

yl = X*b;
plot(tr,yr,'x',tr,yl,'o')
error = (yr - yl)'*(yr  - yl)

error =
2.9694e+003

‘Downward Trend’ in the Data Set

Daily Attendance, Dr = [tr yr], ‘x*

Parabola Component, [tr yl], ‘o’
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subtract
parabola;
analyze the
remainder yrem

The parabola component yi is subtracted from yr; the differ­
ence is named yrem. The list yrem is tested for random behavior
using the Turning Point Test (p. 122):

yrem = yr - yl;
plot(tr,yrem,'x')
rand = tptest(yrem)

rand =

58.0000 0 38.6667 1.0000 43.0000 0.5320

Parabola Component Removed

The information given in rand shows that if yrem were gener­
ated by random means alone, then one would expect to see
about 38.7 turning points. There are actually 43 turning points
in yrem. The probability that 43 or more turning points would
occur, should the data be truly random, is about 53.2%. A
decision is made to search for sinusoidal components.
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use spline
interpolation

There are no obvious sinusoidal components in yrem. The pe­
riodogram (p. 241) is obtained as an initial data analysis tool.
Since a uniform time list is required to find the periodogram,
spline interpolation (p. 211) is used to interpolate the data
set [tr yrem] . Then, the periodogram of the interpolated data
set is computed. Both the interpolated data set and its peri­
odogram are graphed below.

yremint = spline(tr,yrem,t);
plot(tr,yrem,'x')
hold
Current plot held
plot(t,yremint,*o z)
hold
Current plot released
[per,sqrcoef] = pervfft([t yremint]);
plot(per,sqrcoef,'x')

Spline Interpolated Data Set, ‘o’

Observe the overlapping of the symbols
‘x’ and ‘o’ at all points in the original
dataset. The points indicated by ‘o’ alone
are the interpolates corresponding to the
missing time values.

Periodogram corresponding to

Spline Interpolated Data Set
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using a A genetic algorithm (p. 188) is used to search for sinusoidal
genetic algorithm components in the range of periods from 2 to 63.

A good fit is found using sinusoids with periods 14.5, 5.5, and
32.5. Selected commands used in the fitting process are shown
below. Also, the graph of the best fit is given.

G = genetic([tr yrem],2,63,.5,122,3,4);

averror = ’
2.6202e+003

averror =
2.5993e+003

averror =
2.6072e+003

averror =
2.5881e+003

(Some of the
Scrolled

Information)

G( 1:4)

ans =
1.0000 5.5000 32.5000 14.5000
2.0000 6.0000 14.0000 33.5000
3.0000 18.5000 14.0000 34.0000
4.0000 18.5000 14.0000 33.5000

G(:,5)

ans =
1.0e+003 *

2.1007
2.1230
2.1992
2.1951

[yb,row,per,coef] = bfitgen(tr,G);
plot(tr,yrem,'xz)
hold
Current plot held
plot(tr,yb)

per
per =

5.5000 32.5000 14.5000

coef
coef =

A B Cl DI
-0.1870 0.0191 3.1433 0.5401

C2 D2 C3 D3
0.0528 2.3873 -3.3723 2.4670
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using gradient
methods to
improve the fit

Gradient methods (p.181) are used to improve the fit. After
two iterations, a ‘best’ fit is found, with approximate periods
5.7, 33.0, and 13.6. Selected commands used are shown below.
The graph of the best fit is given, as well as the graphs of each
of the three sinusoidal components.
These three components have a reasonable interpretation: pe­
riod 5.7 is slightly longer than a weekly component; period 13.6
represents the time between exams in the course (this compo­
nent peaks at the exam dates); and period 34.5 is approximately
half the semester (this component peaks at mid-semester).

[E,f] = nonlin([5.5 32.5 14.5],[tr yrem],.01,1) ;
E(25,l:ll)
ans =
-0.6543 0.0260 5.7047 1.6267 3.4054
33.0589 0.1360 2.4950 13.4513 0.0694 4.4829

E(25,12)
ans =

1.8584e+003

[E,f] = nonlin([5.7 33.1 13.5],[tr yrem],.001,1) ;
E(25,l:ll)
ans =
-0.5755 0.0252 5.7119 1.4574 3.4746
33.0090 0.1377 2.5493 13.5910 -0.5250 4.4891

E(25,12)
ans =

1.8519e+003
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The sum of the parabola component and the three sinusoidal
components are shown with the original data:

EXAMPLE 2 The data set graphed below gives the daily balance in a check­
ing account from 1/14/92 td 12/31/93., Both a ‘point’ graph
and a ‘line’ graph of the data axe shown.
There are several trends in the data, due to different types of
employment for one contributor to the account:
• From 1/14/92 to 5/22/92, one contributor was employed

full-time, on a 9-month pay schedule.
• From 7/13/92 to 7/30/93, the same contributor was em­

ployed half-time, on a 12-month pay schedule.
• From 8/27/93 to 12/31/93, the same contributor was em­

ployed full-time, on a 12-month pay schedule.
These three periods are roughly delineated in the first graph
below, by the dashed vertical lines.

is named y.

dlybal =
1.0e+004 *

0.0001 0.5142
0.0002 0.5034
0.0003 0.5016
0.0004 0.4948
0.0005 0.6677
0.0006 0.6677
0.0007 0.6677
0.0008 0.6677
0.0009 0.5839
0.0010 0.5143

t = dlybal(:,1);
y = dlybal(:,2) ;

The first column of dlybal is named t, and the second column



288

least-squares
fit

A least-squares polynomial fit is used to account for the differ­
ent employment types. After some experimentation, the an­
alyst decides that the best fit to account for these trends is
obtained by using a fifth order polynomial. The polynomial fit
is named poly, and the difference between y and poly is named
diffl.

fl = ones(t);
f2 = t;
f3 = t.A2;
f4 = t.A3;
f5 = t.A4;
f6 = t.A5;
X = [fl f2 f3 f4 f5 f6] ;
b = (X'*X)  \ (X'*y)
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 7.998835e-030
poly = X*b;
plot(t,y,t,poly,'.•)
diffl = y - poly;
plot(t,diffl)

POLYNOMIAL FIT, poly

GRAPH OF diffl
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periodogram
o/diffl

As a preliminary analysis tool, the periodogram of diffl is
found. Inspection of the matrix [per sqrcoef] shows that the
three highest peaks occur at periods 14, 120, and 180.

genetic algorithm As another preliminary analysis tool, a genetic algorithm is
applied to diffl. Due to memory constraints on the analyst’s
computer, only a very limited application is made. However,
a component close to 180 does emerge in one of the ‘best-fit’
strings. Also, inspection of each population shows that period
365 appears in many ‘high-fit’ strings.

gradient Based on these initial analyses, gradient methods are used to
methods fit mif i with sinusoids of periods 14, 120, 180, and 365.

After two iterations of the MATLAB function nonlin, a best
fit to diffl is obtained using periods of approximately 14, 116,
166, and 286. These are roughly 2-week, |-year, |-year, and
|-year components.

[E.app] = nonlin([14 120 180 365], [t diff1],.001,1);
E(24,l:14)
ans =
Columns 1 through 7
113.1623 -0.2060 13.9982 -165.2899 -449.1588 116.2768 -101.6867
Columns 8 through 14
362.8687 163.3660 -297.0426 431.4670 286.5257 -272.6909 -246.5112
[E.app] = nonlin([14 116 163 286],[t diffl],.0005,1);
E(24,l:14) ans =
Columns 1 through 7
129.0910 -0.2557 13.9984 -163.5705 -449.5768 115.9341 -74.3696
Columns 8 through 14
364.8528 165.7173 -366.5421 379.7280 286.4843 -274.9777 -227.2658
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the total
approximation

By adding poly to the best fit obtained from diffl, the total
approximation to the data is found. This approximation is
graphed below using an ‘x’, superimposed over the actual data
set (as a line graph). The graph is broken into 4 smaller pieces
for easier readability.
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Appendix 1
Mathematical Logic

the purpose of
this appendix

The purpose of this appendix is to give the reader a formal
introduction to mathematical logic, emphasizing the skills and
language that are needed to understand the arguments and
proofs in this dissertation.

mathematical
expressions;
mathematical
sentences

A mathematical expression is analogous to an English norm;
it is a name given to some'mathematical object of interest. A
mathematical expression is often a number, a function, or a
set.
A mathematical sentence expresses a complete thought. The
next example explores the difference between expressions and
sentences.

EXAMPLE
expressions
versus
sentences

is an expression. The chosen variables (t,- and y,) suggest
that it represents an ordered pair of real numbers; a data point.
*{(<<, yi)}tei’ is an expression. It is a set; a collection of data
points.
l(ti,yi) = (»>i2)’ is a sentence. Note that sentences have verbs;
the verb in this sentence is the equal sign, ‘=’.

implications ‘IF data is generated by the rule yn = n, THEN y5 = 5’ is a
sentence. It is a sentence of the form ‘If P, then Q’; sentences
of this form are called implications, and will be treated in detail
in this appendix.
Of particular importance in mathematics are sentences that
are either true, or false, but not both, and these are called
statements:

DEFINITION
statement

A statement is a sentence that is either TRUE or FALSE.

notation
for statements

Capital letters, like P and Q, are frequently used to denote
statements. Thus, P could denote the true statement T+l = 2’,
and Q could denote the false statement ‘1 + 1 = 3’.
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variable;
universal sei

A variable is a symbol (often a letter) that is used to represent
an arbitrary member of a specified set. This ‘specified set’ is
called the universal set associated with the variable. Thus, the
universal set gives the elements that one is allowed to draw on
for a particular variable.
Many sentences become statements, once choices are made for
the variables that appear in the sentence. For example, the
truth of a sentence like lx = 3’ depends on the choice made for
the number x. If x is 3, the sentence is true; otherwise, it is
false. Such a sentence is called a conditional sentence:

DEFINITION
conditional
sentence

A sentence with at least one variable, that becomes a statement
whenever the variables are replaced by elements from their
universal sets, is called a conditional sentence.

notation for
conditional
sentences;

The conditional sentence lx = 3’ can be conveniently denoted
by P(i). Thus, P(3) is true, but P(y) is false for y / 3.
The conditional sentence ‘x + y = 2’ can be denoted by P(x,y).
Thus, the sentences P(l,l) and P(0.5,1.5) are true, but P(0,3) is
false.
For simplicity, the following convention will be adopted for the
remainder of this appendix: the notation P(z) will be used to
represent a conditional sentence, with the understanding that
x may represent more than one variable. For example, the
conditional sentence P(t,y) can be denoted by P(i), by defining
x = (t,y).

EXAMPLE
statements
and
non-statements

The sentence {1,2} = {2,1} is a statement; it is true. Two sets
are equal when they contain precisely the same elements.
The sentence (1,2) = (2,1) is a statement; it is false. In order
for two lists to be equal, corresponding entries must be equal.
See Section 1.2 for properties of fists.
The sentence lThe price of GE stock at 12:00 PM on 8/28/58
was greater than its price one day earlier at the same time'
is a statement. Even though the truth (true or false) of this
sentence may be unknown to the reader, the sentence is either
true, or false.
‘ This sentence is false' is not a statement. If it were true, then
it would have to be false. If it were false, then it would have
to be true. Therefore, it is neither true or false.
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connectives Connectives are used to make statements into ‘larger’ state­
ments. The five basic connectives in mathematics axe:

not, and, or,

These connectives are defined via the truth table below, and
axe discussed in the following paragraphs:

p Q not P P and Q P or Q P => Q P Q
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

negations;
not P

The statement ‘not P’ is called the negation of P. If P is true,
then ‘not P’ is false; if P is false, then ‘not P’ is true.

'and ’ statements;
P and Q

The statement ‘P and Q' is true only when both P and Q are
true. For example, the conditional sentence ‘x = 1 and x = -1’
is false for all real numbers x, since a number cannot simulta­
neously equal 1 and -1.

'or' statements;
P or Q

The statement ‘P or Q’ is true when at least one of P or Q is
true. For example, the conditional sentence lx = 1 or x = -1’ is
true for x e {1,-1}, and false otherwise.
The reader is cautioned to distinguish between the English
word ‘or’, and the mathematical word ‘or’. In English, the
phrase ‘Carol or Bob went to the meeting’ usually means that
either Carol went, or Bob went, but not both went. In mathe­
matics, the statement ‘P or Q’ is true if P is true, or Q is true,
or both P and Q are true.

implications;
P=*Q

The statement ‘P => Q’ is read as ‘P implies Q', and is perhaps
the most commonly-occuring type of mathematical sentence.
Therefore, it should not be surprising that the sentence has
many synonyms, including:
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synonyms for
P ==> If P, then Q

Whenever P, then Q
<2, if P

Q, whenever P
P is sufficient for Q
Q is necessary for P

hypothesis
and conclusion
of an implication

Given an imphcation P => Q, the statement P is called the
hypothesis of the implication, and Q is called the conclusion of
the implication.
Roughly, a sentence of the form ‘P => Q' is true if it has the
property that whenever P is true, then Q is also true. If P is
true, but Q is false, then the sentence ‘P => Q' is false.

vacuously
true

Observe from the truth table that if the hypothesis of ‘P => Q’
is false, then the statement ‘P ==> Q' is true; in this case, ‘P =>
Q' is said to be vacuously true. (The reason for this aspect of
the definition should become clear, cis soon as the discussion of
statements of the form ‘For all x, P(z) => Q(x)’ is completed.)

equivalence;
P <=> Q

The sentence ‘P <=> Q' is read as ‘P is equivalent to Q’ or ‘P
if and only if Q\ The symbol ‘<=>’ is more frequently used
when an equivalence is displayed (set off and centered); and
the phrase ‘if and only if’ is more frequently used when an
equivalence appears in text.
The statement ‘P <=> Q’ is true exactly when P and Q have the
same truth values; either they are both true, or they are both
false.

equivalent
statements
can be used
interchangeably

Whenever two mathematical statements are equivalent, then
they always have the same truth values, and hence can be
used interchangeably. The next example presents an important
mathematical equivalence.

EXAMPLE
DeMorgan’s Laws

The following truth tables prove that:
For all statements P and Q,

not(P and Q) <=> (not P) or (not (?) , and
not(P or Q) <=> (not P) and (not Q) .

These laws give the correct way to negate ‘and’ and ‘or’ state­
ments, and are known as DeMorgan’s Laws.
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p Q P and Q not(P and Q) not P not Q (not P) or (not Q)
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

P Q P or Q not(P or Q) not P not Q (not P) and (not Q)
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Other equivalent statements, that are important for under­
standing the proofs in this dissertation, are presented later on
in this appendix.

quantifiers Many commonly-occurring mathematical sentences take the
forms:
For all x, P(z) => or
There exists x such that P(or); or
There exists a unique x such that P(x).
The phrases lFor all', ‘ There exists', and ‘ There exists a unique'
are called mathematical quantifiers. Quantifiers, and quanti­
fied statements, are the next topic of discussion.

DEFINITION
truth set
of a
conditional
sentence

Let x have universal set U, and let P(x) be a conditional sen­
tence. The truth set of P(x) is the set of all x G U for which
P(x) is true.

EXAMPLE The sentence ‘i = 3’ has an implied universal set ll = R. The
truth set is {3}.
The sentence ‘^ = 2’ has implied universal set U = {i G R | x /
0). The truth set is
The sentence lx + y — 1’ has implied universal set R x R :=
{(x,y) | x G R and y g R}. The truth set is {(a:, 1 - e) | x G R}. The
graph of the equation x + y = 1 is a picture of its truth set; in
this case, it is the line with y-intercept (0,1) and slope -1.
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DEFINITION
quantified
statements

Let x have universal set Z/, and let P(r) be a conditional sen­
tence.
The quantified statement ‘For all x, P(z)’ is true if and only if
the truth set of P(i) equals U.
The quantified statement ‘ There exists x such that P(x)' is true
if and only if the truth set of P(x) is nonempty.
The quantified statement ‘There exists a unique x such that
P(®)’ is true if and only if the truth set of P(x) contains exactly
one element.

the use of
‘if and only if’
in this definition

Notice the use of the words ‘if and only if’ in this definition.
For example, in the second sentence, the words ‘if and only if’
are being used to compare the sentences
For all x, P(x)
and
the truth set of P(z) equals U.
Therefore, these two sentences always have the same truth val­
ues. If one is true, so is the other; and if one is false, so is the
other. Observe that if the sentence ‘the truth set of P(r) equals
iC is false, then there must exist yEll for which P(y) is false.

DEFINITION
counterexample

Let P(x) be a conditional sentence, and let U be the universal
set for x. A counterexample for P(x) is a particular choice of y
from the universal set for which P(y) is false.

DEFINITION
proving
a sentence

Thus, a counterexample is used to show that a mathematical
sentence is not always true.

Let P(x) be a conditional sentence, and let U be the universal
set for x. To prove P(x} means to show that P(i) is true, for all
x&U.

EXAMPLE The quantified statement ‘For all x € R, \/x2 = x’ is false. For a
counterexample, choose y = -2. Then, the sentence ‘a/(-2)2 =
—2’ is false.
The quantified statement, ‘For all x > 0, vT2 = is true.
The quantified statement, ‘There exists a unique x G R such
that x(x2 +1) = 0’ is true. With universal set R, the truth set of
x(x2 + 1) = 0 is {0}, which contains exactly one element.
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The quantified statement, ‘ There exists a unique x e C such
that i(r2 + 1) = 0’ is false. Here, C denotes the set of complex
numbers. With universal set C, the truth set of x(x2 + 1) = 0 is
{0,i, -i}, which has more than one element.

Let P be the quantified statement, ‘ There exists a real number x
with x7-\/2x6+3xA-x+Tr = O’. Then, P is true. It is not necessary
to know what particular real number makes the conditional
sentence ‘a:7-5/2a:6 + 32:4-i + 7r = 0’ true; one need only establish
that such a number does exist, and this is an easy consequence
of the Intermediate Value Theorem.

proving
implications

To prove a quantified statement of the form 
‘For all x, P(z) => Q(z)’ , 
it is necessary to show that the sentence ‘P(x) => Q(x)' is true
for every choice of x from the universal set. If P(x) is false, then
the sentence ‘P(z) => Q(x)' is vacuously true. Thus, one need
only show that whenever P(x) is true, so is Q(x). It is precisely
for this reason that the sentence ‘P => Q' is defined to be true,
when P is false.

common forms The remainder of this appendix discusses the forms of proof 
of proof that occur most frequently in this dissertation.

direct proof
ofP => Q

A direct proof of
‘For all x, P(x) => Q(x)’
shows that whenever P(i) is true, so is Q(i).
For example, Lemmas 1 and 3 in Section 1.3 use direct proofs.

the
contrapositive
of an implication

The statement ‘not Q => not P’ is called the contrapositive of
the implication ‘P => Q\ The truth table below proves that
an implication is equivalent to its contrapositive.

p Q P => Q not Q not P not Q => not P
T T T F F T
T F F T F F
F T T F T T
F F T T T T

proof of
P => Q, by
contrapositive

To prove a sentence of the form ‘P => Q’, one can equivalently
prove ‘not Q => not P’ by a direct proof. Thus, the proof
shows that whenever Q is not true, then P is not true.
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symbols
A, V

For ease of notation, the symbols -> for ‘not’, A for ‘and’, and
V for ‘or’ are introduced.

proof of
P => Q, by
contradiction

A contradiction is a sentence that is always false. For any
statement 5, the sentence ‘S A (->S)’ is a contradiction.
Let P, Q and S be statements. The logical equivalence

(P => Q) ((PAnQ) => (SA-S))

justifies the method of proof called proof by contradiction. To
prove lP => Q' by contradiction, one supposes that P is true
and Q is false; and then reaches a contradiction.
For example, Lemma 4 in Section 1.3 uses a proof by contra­
diction.

proof of
P => (Q\/R)

To prove a sentence of the form ‘P => (QVP)’, one often proves
the logically equivalent sentence ‘(PA--Q) => R' (see the truth
table below).
For example, Theorem 2 in Section 1.4 uses this proof form.

p Q R P ==> (QVP) PA--Q (PA-Q) => R
T T T T F T
T T F T F T
T F T T T T
T F F F T F
F T T T F T
F T F T F T
F F T T F T
F F F T F T

proof of
(P/\Q) => R

To prove a sentence of the form ‘(PAQ) => P’, one often proves
the logically equivalent sentence ‘(P A -<R) => -<Q\ The proof
of this logical equivalence is left as an exercise.

proof of
P <=> Q

To prove a sentence of the form ‘ P <=> Q\ one usually proves
the equivalent sentence ‘(P ==> Q) A (Q => P)’. This logical
equivalence justifies the use of the symbol ‘ <=> ’.
This form of proof is used for the Proposition on page 38.
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proof by
induction

The method of proof by induction is indispensible whenever it
is desired to show that a statement P(n) is true for all positive
integers. The basic technique is:
• Show that P(l) is true.
• Show that whenever P(k) is true for a positive integer k,

then P(k + 1) is also true.
If both of these steps can be accomplished, then since P(l) is
true, P(2) must be true. And since P(2) is true, then P(3) must
be true—and so on. This logic is sometimes referred to as the
domino principle.
There are many variations on this technique. For examples,
see Lemmas 2 and 5 in Section 1.3.
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Vector Spaces, Norms and Inner Products
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A mathematical object called a vector space provides the struc­
ture necessary to discuss linear combinations of elements, such
as

am + a2X2 + • • • + <Mn ■

A vector space consists of a set of objects, called vectors, on
which two operations are defined: addition, and multiplication
by scalars. The precise definition follows:

DEFINITION
vector space
over F;
real vector space;
complex
vector space

Let V be a set of objects, and let F denote either the real
numbers (R) or the complex numbers (C). The elements of F
are called scalars.
Let + and • denote operations,

+ : V xV —>V, (x,y)^x + y
F x V —+ V, (a, x) i-> a • x .

The operation '+’ is called addition, and ‘-’is called scalar
multiplication. The element a-x is denoted more simply by ax.
Observe that x+y and ax must be in V, for all x, y G V and a g F;
that is, V is closed under addition and scalar multiplication.
If the axioms listed below are satisfied for all x, y and z in V,
and for all scalars a and /?, then V is called a vector space over
F, and the elements of V are called vectors-.
• addition is commutative: x + y = y + x
• addition is associative: x + (y 4- z) = (x + y) + z
• zero vector: There exists a vector 0 G V, called the zero

vector, satisfying x + 0 = x for all x G V.
• additive inverses: For every x G V there exists a vector

—x G V satisfying x + (-x) = 0. The vector —x is called the
additive inverse of x.

• distributive laws: a(x + y) = ax + ay, and (a + /?)x = ax + /3x
• lx = x, and a(/?x) = (a/?)x

Vector spaces in which the scalars are real numbers are called
real vector spaces, and those in which the scalars are complex
numbers are complex vector spaces.
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Uniqueness of the zero vector and additive inverses follows
readily from the definition. The name -x is justified for the
additive inverse, since it can be easily shown that (-1) -x = -x.
The symbol 0 is used to denote both 0 G F and 0 G V, with
context determining the proper interpretation.
Primarily real vector spaces are considered in this appendix.

EXAMPLE
V = R"
as a real
vector space;
n-dimensional
Euclidean space

Let R” be the set of all ordered n-tuples of real numbers:

Rn := {(®i,... ,in) : I, G R, 1 < i < n} .

For x = ,xn) and y = (yi,... ,yn) in Rn, and a G R, define
addition and scalar multiplication by

(xi,... ,®n) + (l/i> •• • ,yn) := (xi + ylt... ,xn + yn) ,
,xn) := (aii,... ,axn) .

The set Rn, together with these operations, is a real vector
space. This space, together with the usual measure of distance
between elements, given by

d(x,y) = \/(xl - J/l)2 + • • • + (xn - J/n)2 ,

is called n-dimensional Euclidean space.

EXAMPLE
fjnxm

The set of all n x m matrices with real number entries, together
with the usual definitions of matrix addition and multiplication
by real numbers, forms a real vector space which is denoted by
Rnxm. The zero vector in Rnxm is the n x m zero matrix. The
additive inverse of X e R"xm is found by multiplying each entry
of X by the scalar —1.

In addition to providing foundational material for review, the
definitions and theorems that follow are needed to discuss the
existence and uniqueness of solutions to the linear least-squares
problem.

DEFINITION
linear
combination

Let V be a vector space over F, and let y G V. Then, y is said
to be a linear combination of vectors xi,... ,xn in V provided
there exist scalars «i,... ,an in F for which

y = aiii + • • • + anxn .
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DEFINITION
subspace of
a vector space

Let V be a vector space over F. A subset W C V is called
a subspace of V if W is itself a vector space over F, with the
same operations of addition and scalar multiplication used in
V. In particular, IV must be closed under addition and scalar
multiplication.

DEFINITION Let V be a vector space, and let S be a nonempty subset of V.
subspace spanned The subspace spanned by S is the intersection of all subspaces
by S of V that contain S. If M is the subspace spanned by S, then

the vectors in S are said to span M.

Thus, the subspace spanned by S is the ‘smallest’ subspace of
V that contains S. It can be shown [H&K, p. 37] that the
subspace spanned by S consists of all linear combinations of
the elements from S.

DEFINITION
convex subset
of a vector space

A subset C of a vector space V is said to be convex if whenever
x,y e C, then also

M := {ax + (1 — a)y | 0 < a < 1} C C .

In R, R2 and R3, the set M of the previous definition is the line
segment connecting x and y.

It is routine to verify that subspaces axe convex.
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DEFINITION
linearly
independent
set

Let V be a vector space over F. A nonempty subset S C V is
said to be linearly independent if it has the following property:
whenever a finite collection xi,..., xn of distinct vectors from S
satisfies

aixi + • • -anxn = 0

for scalars &i,... , an , then it must be that

= a2 = • ■ • = an = 0 .

linearly
dependent

Consequently, if S is not linearly independent, then there exist
distinct vectors xj,... ,xn in S, and scalars ai,... ,an, not all
zero, for which

aixi +----h anxn = 0 .

In this case, S is said to be linearly dependent.

DEFINITION
basis for V

Let V be a vector space. A basis for V is a linearly independent
set of vectors from V that spans V. If V has a finite basis, then
it is finite-dimensional. The notation dim(V) = n is used to
denote that V has dimension n.

DEFINITION
linear
transformation;
kernel ofT,
ker(T);
range ofT

It can be shown that any two bases for a finite-dimensional
vector space have the same number of vectors [Anton, p. 162].

Let V and W be vectors spaces over F. In what follows, the
notation *+ ’ is used to denote both the addition in V, and the
addition in W.
A linear transformation from V into W is a function T: V —»■ W
satisfying, for all x, y € V and for all a G F,

T{x + y) = T(x) + T(y) , and
T(ax) = aT{x) .

The set {x G V | T(x) = 0} is called the kernel of T and denoted
by ker(T).
The set {w G W | there exists v G V with T(v) = w} is called the
range of T, and is denoted by H{T).
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THEOREM Let V and W be vectors spaces over F, and let T: V -+ W be a
linear transformation.
The set ker(T) is a subspace of V, and the set H(fT) is a subspace
of W [Anton, p. 231].
If V has dimension n, then ([Anton, p. 233])

dim (ft (T)) + dim(ker(T)) = n .

EXAMPLE
a matrix as
a linear
transformation;
rank of M

Let M be an n x m matrix with real entries. The matrix M
naturally defines a linear transformation from Rm to Rn, as
follows: let x g Rm be represented by an m x 1 vector. Then,
Mx is an n x 1 vector, so Mx G R". It is routine to verify that
this map

M ux h-*•  Mx

satisfies the requirements of a linear transformation. Let M de­
note both the matrix M, and the linear transformation defined
by Af, with context determining the correct interpretation.
By the previous theorem, the range of M is a subspace of Rn; the
dimension of the range is called the rank of M. Each column
of M is a vector in Rn. It can be shown that the range of M is
the subspace of Rn spanned by the column vectors of M.
The kernel of M is the set

ker(Af) = {z G Rm | Mx = 0} ,

where, here, 0 denotes the n x 1 zero vector.
If the number of rows in M is the same as the number of
columns, then M is called a square matrix. By definition, M
is invertible if and only if there exists a matrix M-1 satisfying
MM'1 = M~1M = I. There are many equivalent characteriza­
tions of invertibility:

THEOREM
equivalent
characterizations
of invertibility

[Anton, p. 171] If M is an n x n matrix, then the following
statements are equivalent:
• M is invertible.
• ker(Af) = {0}
• The determinant of M is nonzero.
• M has rank n.
• The row vectors of M are linearly independent.
• The column vectors of M are linearly independent.



305

A vector space V serves as the starting point for other useful
spaces. If V is endowed with additional structure that allows
one to measure the ‘size’ of elements of V, then V is called a
normed space. The precise definition follows:

DEFINITION
normed space

Let V be a vector space over F, and let a E F.
If F = R, then |a| denotes the absolute value of a. If F = C, then
for a = a + W, |a| = y/a2 + b2.
A norm on V is a function,

||||:7->R, x-M,

that assigns to each x e V a nonnegative real number ||z||, and
that satisfies the following additional properties, for all x e. V
and a G F:
• ||x|| = 0 <=> z = 0
• M = |a|.|H|
• triangle inequality: ||z + j/|| < ||:r|| + ||y||

A vector space V, together with a norm on V, is called a normed
space.

in a normed space, In a normed space, the distance between vectors x and y can be
distances between
vectors
can be measured

defined via
d(x,y) :=||x-y|| .

It is routine to verify that the distance function defined in this
way satisfies the properties given in the next definition:

DEFINITION
metric space

Let S be a set. A function

d: S X S —► [0,oo) , (z, y) i-t- d(x, y) ,

is called a metric on S, if it satisfies the following properties:
• d(x,y)=Q <=> x = y
• symmetry: d(x,y) = d(y,x)
• triangle inequality: d(x, y) < d(x, z) + d(z, y)

A set S', together with a metric on 5, is called a metric space.
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Consequently, every normed space is a metric space. Observe
that a metric space need not be a vector space (★ just as a
topological space need not be a vector space). However, many
interesting metric spaces are also vector spaces.

DEFINITION
convergent
sequence;
Cauchy sequence;
complete space

Let S be a metric space, with metric d.
Let (rn)“=i be a sequence in S, and let x G S. The sequence
(•^n)n=i is said to converge to x if for every e > 0, there exists a
positive integer N = N(e), such that for all n > N, d(xn,x) < e.
A sequence (in)“=i from S is said to be Cauchy (pronounced
‘KO-shee’) if for every e > 0, there exists a positive integer
N = JV(e), such that if m, n > N, then d(xm,xn>) < e.
The space S is said to be complete if whenever (zn)£°=1 is a
Cauchy sequence in S, then there exists x G S such that the
sequence (zn) converges to x.

THEOREM Every finite-dimensional subspace of a normed space is com­
plete (in the metric induced by the norm) [Krey, p. 73].

If a vector space V is endowed with structure which enables
one to talk about angles between vectors, and in particular
orthogonality (perpendicularity) of vectors, then it is called an
inner product space. Only real vector spaces are treated in the
next definition:

DEFINITION
inner product
space

Let V be a real vector space.
An inner product on V is a function,

( , ) : V x V -*•  R , (x, y) (x, y) ,

that satisfies the following properties, for all x,y,z G V and for
all a g R:
• {x + y, z) = (x, z) + (y, z)
• (ax,y) = a(x,y)
• (x,y) - (y,x)
• (x, x) is a nonnegative real number
• (x,x) = 0 <=> x = 0

A vector space V with an inner product on V is called an inner
product space.
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It follows easily from the definition that, for all a G R and
X,y G V:
• (x,ay) =a(x,y)
• <*>!/+*)  = <*,!/)  + <*>*)

every It can be shown that every inner product space is a normed
inner product space space, with norm
is a normed space r------r
and a metric space 1FII = y\x,x/ .

Thus, every inner product space is also a metric space, with
metric

d(x,y) = ||z-y|| .

Hilbert space If V is an inner product space which is complete in the metric
induced by the inner product, then V is called a Hilbert space.

EXAMPLE
Rn as an

Let x = (xi,... ,xn) and y = (yi,... ,yn) be vectors in Rn. Then,

inner product space xiVi "I----- 1" xnVn

defines an inner product on Rn, that induces the standard norm
and metric on Rn. It is a consequence of the previous theorem
that Rn with this inner product is a Hilbert space.

The Schwarz inequality, given next, describes the relationship
between an inner product and its induced norm:

THEOREM
Schwarz
Inequality

Let V be an inner product space with inner product ( , ) and
induced norm || ||. Then, for all x,y G V,

l(x,y)l<IH| ||y||.

By the Schwarz Inequality, if x and y are any nonzero vectors
in an inner product space, then

-1 < < i .
-IMIIMI-

Consequently, there is a unique angle 0 < 0 < ir satisfying cos 9 =
. If, in addition, (x, y) = 0, then cos fl = 0 and hence fl = |.

Tn this case, x and y are said to be orthogonal.
These observations help to justify the following definition:
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DEFINITION
angle between
vectors;
orthogonal
vectors

Let V be an inner product space with inner product ( , ) and
induced norm || ||. If x and y are nonzero vectors in V, then the
angle 0 between x and y is the unique angle 0 < 0 < ir satisfying

CO3g- (g.y)
M toll '

For all x,y e V, x and y are orthogonal (or perpendicular) if
and only if (x, y) = 0. A set of vectors is mutually orthogonal if
every distinct pair chosen from the set is orthogonal.
If x is orthogonal to every vector in a set W, then x is said to
be orthogonal to W.
A set of vectors {xi,... ,zn} is orthonormal if the vectors are
mutually orthogonal, and if each vector in the set has norm 1.

It is routine to verify that if S is any set of mutually orthogonal
vectors that does not contain the zero vector, then S is linearly
independent.

(u,v)v

orthogonal
projections

Let V be an inner product space, and let u G V. Suppose v G V
has length 1. The vector

is called the orthogonal projection of u on v. The name is
justified, since (u, v)v is a scalar multiple of v, and u - {u,v)v is
orthogonal to v:

(u — (u,v)v,v) = (u,v) — (u,v){v,v)
= (u>v) - («»«>(!) = 0 .
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Gram-Schmidt
orthogonalization
procedure

infimum

MINIMIZING
VECTOR
THEOREM

M •/
F

More generally, if W is a subspace with orthonormal basis
vi,., vn, and if u is any vector in V, then

wi := (u, vi)«i + •■• + (“> vn)vn

is the orthogonal projection of u on W, and w2 := u - wj is the
component of u orthogonal to W. Clearly, wi g W. It is routine
to verify that w2 is orthogonal to W.
The projections thus defined are used in the Gram-Schmidt
orthogonalization procedure, discussed next. This procedure
is used in Section 2.3, Discrete Orthogonal Functions.

Let S = un} be any set of linearly independent vectors in
an inner product space. The Gram-Schmidt orthogonalization
procedure converts S to a set {vi,..., vn} of orthonormal vectors
with the same span as S, as follows:
• Define V1 :=
• To get v2, project u2 onto the subspace spanned by vj, and

then normalize it:
U2 - <U2,V1)V1

2- ||u2- (U2,V1)V1|| '

• To get v3, project u3 onto the subspace spanned by and
v2:

«3 - (U3,V1)V1 - («3, V2)v2
V3 I— 1 " ™" ■ ' ,

||«3 - («3, V1)V1 ~ <U3, V2) V2||

• Continue in this fashion, obtaining v,+i by projecting u,+i
onto the subspace spanned by {in,...

In the next theorem, the notation ‘inf’ denotes the infimum of
a set of real numbers, that is, the greatest lower bound.

[Krey, p. 144] Let V be an inner product space and M / 0
a convex subset which is complete (in the metric induced by
the inner product). Then for every given v g V there exists a
unique rh G M such that

inf II” - mll = llu “ ”»ll •

This theorem is applied next to the least-squares minimization
problem:



310

THEOREM
existence and
uniqueness of
solutions io the
least-squares
problem

Let X be an n x m matrix with real entries, and let 1/ € Rn.
Then, there exists a solution to the least-squares problem

c1)

The following conditions are equivalent:
a) The solution is unique.
b) ker(X) = {0} , where 0 is the m x 1 zero vector.
c) The columns of X are linearly independent in Rn.

PROOF
existence

Let X 6Rnxm and let y 6 Rn. The range of X is a subspace of
V = Rn ; call this subspace M. Since

{||y —m|| | m G Af} = {||y — X6|| | 6 G Rm} ,

it follows that if a solution to

inf l|y-mll (2)mtM

exists, then so does a solution to (1). For if rn solves (2), then
choose b g Rm with m = Xb. Then, b is a solution to (1).
Since subspaces are convex, and since finite-dimensional sub­
spaces are complete, the Minimizing Vector Theorem guaran­
tees a solution to (2), and hence a solution to (1).

uniqueness It is next proven that a) => b) => c) => a), completing the proof.
Suppose that the solution to (1) is unique; call it b. Suppose for
contradiction that there exists x / 0 in ker(X). Then, X(6+x) =
Xb+Xx = Xb, so that ||y-X6|| = ||j/-X(b + ®)||. Therefore, b+x is
a different solution to (1), providing the desired contradiction.
Suppose ker(X) = {0}. Since m = dim(ker(X))+dim(range of X),
it follows that the range of X has dimension m. Therefore, the
m columns of X must be linearly independent.
Suppose the columns of X are linearly independent. Again,
since m = dim(ker(X))+dim(range of X), it follows that ker(X) =
{0}. Suppose bi and b2 are both solutions of (1). Then, ||y-
X6i|| = ||y-X62||- But, since solutions to (2) are unique, and
since both Xbi and Xb2 are in M, it must be that Xbi = Xb2,
from which X(bi - b2) = 0. Thus, bi - b2 g ker(X), from which
bi = b2. Thus, solutions are unique. |
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EXAMPLE Let A(i) = t and /2(i) = It. Let T = (0,1,2). Then, /i(T) = (0,1,2)
and f2(T) = (0,2,4). The matrix X that arises in the linear least­

Xij = fj(ti) • Thus, X =

squares approximation problem (see Section 2.2) is defined via
r0 01

1 2 . It is routine to verify that
u2 4

kerX = {(/, —|) | t e R) / {0}. Let y = (0,1,2) G R3. In this case,
there are an infinite number of solutions to the least-squares
problem miniGR3 ||y — A7>||2, as follows:

||y —X6|| = 0 <=> y — Xb = 0

<=> bi + 262 — 1

’O' 0 ‘o'
1 — 6i + 262 = 0
2 2bi + 462_ 0

62 = |(1-6i) •
z

In particular, all functions of the form Kfi and |(l-/<)/2 solve
the least-squares problem.
It was noted in Section 2.2 that if X*X  is invertible, then there
is a unique solution to the linear least-squares approximation
problem. However, in this example, X*X  = ® is not in-

LU Zu J
vertible, since it has determinant 0. Note also that the columns
of X are not linearly independent, since the second column is
a multiple of the first.

Much of the material discussed in Section 2.3 is conveniently
expressed in terms of the singular values of A. Important defi­
nitions and results are briefly summarized here. The remainder
of this appendix can be skipped without any loss of continuity.

By definition, a real m x m matrix Q is orthogonal if Q*Q  = I,
where I is the m x m identity matrix. Equivalently, Q is orthog­
onal if and only if = Q-1. If Q is orthogonal, then it can be
shown that the columns (rows) of Q form an orthonormal basis
for Rm [G&VL, p. 70].
If A is any real m x n matrix, then it can be shown that there
exist orthogonal matrices U G Rmxm and V G Rnxn such that

[/‘AV = diag(o-i,... ,CTP) G RmXn , p = min{m,n},

where ai > <r2 > ••• > crp > 0, and where diag(cr1 <rp) denotes
the matrix with a,- in row i and column i, and with zeroes
elsewhere [G&VL, p. 71].
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singular values
of a matrix

By definition, the cr,- axe the singular values of A. The largest
singular value, ai, is also denoted by ermax •
Both the 2-norm (see p. 157) and Frobenius norm (see p. 159)
of a matrix A are neatly characterized in terms of the singular
values of A [G&VL, p. 72]:

IHIf = + + >
ll-^lb = O’max •

p = min{m,n} ,

There is a beautiful relationship between the singular values of
A and the eigenvalues of A*  A, as follows:

U'AV = diag(<ri.......ap)
=> (Z7*̂V)*  = diag^!,... ,<rp)
=> VtA‘ U = diag(<ri,... , <rp)
=> (VtA‘[/)(t/‘AV) = diag(<72)...,a2)
=> V'fA'A)V = diag(<r2,... , a2)
=> A*A  = Vdiag(o-2,... ,ct2)V‘

Thus, A‘A is similar to diag(a?,... ,ct2). Since similar matri­
ces have the same eigenvalues, and since the eigenvalues of a
diagonal matrix lie on the diagonal, it follows that A‘A has
eigenvalues tr2,... ,o-p. Thus, the singular values of A (which
are, by definition, nonnegative numbers) are the square roots
of the eigenvalues of A*  A.
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Appendix 3
Derivation of the Least-Squares Approximation Formula

Let fi,... ,/n be functions from Rm into R. Let b = (61,... ,6m),
and define f: Rm —► RN by

f(b) =

rA(b)i
A(b)

L/N(b)J

The derivative of f is represented by the N x m Jacobian matrix

As in the dissertation proper, the notation A.j is used to denote
the entry in row i and column j of the matrix A.
Note that Dfy = Define S: Rm —► R by

S(b) :=f(b)‘-f(b) = £(/,(&!,... ,bmtf .

>=i

Then,

and so

do* obk

DS‘ =

r 8S -|
db,
as
db3 = 2 M

M
ii’ if »-» >-*

__
__

1

as
Labm J

r/i(b)i
/2(b)

-/„(b).

= 2(Df)‘(f(b)) .
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The linear least-squares approximation formula in the text is
now an application of this result, talcing f(b) = y - Xb. The ith
component function is

m
fi=yi-Y/Xikbk ,

k=l

so that

dbj ~ *

Then,

DS‘ = 2(Df)‘(f(b))
=2[*] (y-xb)
= 2[-Xit](y-Xb)
= 2(-X‘)(y-Xb)
= -2(X‘y - X‘Xb)
= 2(X(Xb - X'y) .
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INDEX
A
addition formulas, 80
aliasing, 91
alignment (for adding lists), 14
amplitude, 74
analyst, 1
‘and’ statement, 293
angle between vectors, 308
apparent period, 88
approximate, 146
approximation, 143
augmented matrix, 60
B
band-pass filter, 270
basis, 303
bouncing, 179
buying long, 132
C
Cauchy-Schwarz Inequality, 159
Cauchy sequence, 306
cfspline (MATLAB FUNCTION), 213
Chebyshev approximation, 145
Chebyshev’s Inequality, 116
closed interval, 18
column vector, 144
codomain, 16
commensurable numbers, 46
complete space, 306
complex exponential function, 85
complex Fourier series, 267
complex numbers, 18
component functions, 2
cond (MATLAB COMMAND), 161
conclusion of an implication, 294
conditional sentence
condition number, 155, 156, 161
conjecture, 6
connectives, 293
continuity, 45
contrapositive, 5, 298
convergent sequence, 306

convex, 302
cosine function, 72

origin of word, 94
countably infinite, 10
counterexample, 296
crossover, 186
cubic spline, 143, 204
curvature, 207
cycle, p-cycle, 34
cyclic frequency, 79
D
data point, 13
data sets, 10
data value, 13
degree measure of an angle, 74
degrees of freedom, 61
deMorgan’s laws, 294
dense, 41
designing filters, 267
determinant, 155
deterministic, 108
dfs (MATLAB FUNCTION), 223
digital filters, 244
digital signal, 19
direct proof, 297
discrete-domain data, 10
discrete-domain function, 17
discrete Fourier series, 215, 222
discrete Fourier transform, 233, 234
discrete orthogonal functions, 164, 165
discrete signal, 19
divides, 54
domain of a function, 16
double-angle formulas, 80
dscorth (MATLAB FUNCTION), 171
E
echelon (row echelon form), 63
echoing (MATLAB), 153
Economics Algorithm, 130
eigenvalue, 252
eigenvector, 252
element, 11
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ellipsis, ‘... ’, 13 increasing order, 10
entry, 11, 13 induction argument, 29
equality of lists, 14 infimum, 309
equivalence, 294 initialization, 186
Euclidean norm, 144 inner product, 165
event, 109 inner product space, 306
expression, 291 input, 10
extending a function, 20 insight, 9
F integers, 18
fast Fourier transform, 107, 233 interpolation, 142
filter coefficients, 244 interval notation, 18

from a given transfer function, 268 invertibility, 304
filters, 244 irrational numbers, 47
find!il (MATLAB FUNCTION), 274 iterative techniques, 173
fit, 8 J
fitness, 186 K
Fourier series (continuous), 81 Kalman filter, 107
frequency of sinusoids, 79 kernel, 303
Frobenius norm, 159 knots, 204
functions, 16 known unknown, 4
function notation, 16 L

fundamental period, 41 Lanczos smoothing, 271
G least common multiple, 54

generation, 187 least positive period, 41
genetic (MATLAB FUNCTION), 188 least-squares approximation, 145
genetic algorithm, 186 length of a list, 12

Gibbs’ phenomenon, 83 linear combination, 301

gradient, 178 linear dependence on a parameter

grad measure of an angle, 74 linearizing technique, 173
Gram-Schmidt orthogonalization procedure, 166, 309 linearly dependent set, 303

H linearly independent set, 303

half-angle formulas, 80 linear system, 60

half-open interval, 18 linear transformation, 303

Hamming, R.W., 9 list, 11

harmonics, 82 listed, 10

Hilbert space, 307 local random behavior, 119

horizontal orientation for lists, 10 logic, 5, 291

hypothesis (plural ‘hypotheses’), 2 M

hypothesis of an implication, 294 maps to, 15

I Martingale Algorithm, 124

imaginary part of a complex number, 87 MATLAB, 20

implications, 291 improving filters, 267 matrix laboratory, 20
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mean (average), 7
mean-square error, 85
member, 11
metric space, 305
minimax approximation, 145
minimizing vector theorem, 309
mutation, 186
mutually orthogonal functions, 165
N
natural cubic spline, 207
negations, 293 neighbor, 108
nonlin, 182
noise, 230
nonlin (MATLAB FUNCTION), 180
nonlinear least squares approximation, 17 3
nonrec (MATLAB FUNCTION), 249
nonrecursive filter, 245
norm, 143, 305

norm (MATLAB COMMAND), 157
2-norm, 157

notation, 10
O
objective function, 186
open interval, 18
operations on lists, 13
‘or’ statement, 293
orientation (vertical or horizontal), 10

orthogonal functions, 154
orthogonality properties of sine and cosine, 84
orthogonal matrix, 161
orthogonal projections, 308
orthogonal vectors, 308
oscillation, 79

in polynomial interpolation, 203

output, 10
output list, 12
P
peak, 108
period (of transfer function), 258
periodic function, definition, 26

periodicity, 26
periodogram, 215, 222

pervfft (MATLAB FUNCTION), 241
phase shift, 74
piecewise continuous periodic function, 81
point spread, 131
Pointwise Convergence Theorem, 82
polyfit (MATLAB COMMAND), 211
polyval (MATLAB COMMAND), 211
prstop (MATLAB FUNCTION), 139
proving a sentence, 296

Q
quantifiers, 295
R
radian frequency, 79
radian measure of an angle, 74
rand, MATLAB COMMAND, 119
ramps, 231
random behavior, 108
random sample, 111
random walk, 2
range of a function, 16, 303
rank, 304
rational numbers, 12, 18
rcond (MATLAB COMMAND), 161
real numbers, 17
real part of a complex number, 87
real-valued function of a real variable, 17
recursive filters, 245
redundancy, 233, 234
relative error, 156
relatively prime, 34

uniqueness of decomposition, 38
reproduction, 186
reshaping techniques, 7, 33
S
Sampling Theorem, 93
scaling periodic functions, 50
scaling of a list, 14
Schwarz Inequality, 307
sensitivity of solutions, 155
sentence, 291
series number, 126
shares, 131
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sigma factors, 272
signal, 19, 103
sine function, 72

origin of word, 94
singular values, 159, 312
sinusoid, 74
size, 143
smoothing filters, 246, 260
span, 302
splines, 203
spline (MATLAB COMMAND), 211
statement, 291 stochastic process, 2
stock market data, 124
strings, 186
symtofc (MATLAB FUNCTION), 275
subspace, 302
T
time, 10
time list, 11
time series, 19, 103
tptest (MATLAB FUNCTION), 122
transfct (MATLAB FUNCTION), 264
transfer function, 252, 258
transpose, 145
trapezoid rule, 245
triangle approach to trigonometry, 94
trigonometric identities, 80
trough, 108
truncated Fourier series, 271
truth set, 295
turning point test, 108
U
uniform convergence, 84
Uniform Convergence Theorem, 84
uniform time list, 14
universal set, 292
V
variable, 292 vector space, 143, 300

R°°, 252
vertical orientation for lists, 10
W
Weierstrass Approximation Theorem, 9




