
SECTION 4.3 Some Very Basic Differentiation Formulas

IN-SECTION EXERCISES:

EXERCISE 1.

1. f ′(x) = 2x

2. f ′(3) = 6

3. f ′(3) = 6

4. Here, the dummy variable t is being used, instead of x. The corresponding prime notation, using dummy
variable t, is f ′(t) = 2t .

5. f ′(3) = 6

6. f ′(3) = 6

7. Both df
dx = 2x and df

dx (x) = 2x are correct; the second is more strictly correct; the first is in more
common usage.

8. Both df
dx (3) = 6 and df

dx |x=3 = 6 are correct.

9. Both df
dt = 2t and df

dt (t) = 2t are correct.

EXERCISE 2.

If f(x) =
√
π2 − 5, then df

dx = 0

If y = e− 3, then y′ = 0

To rewrite the next example, it must first be given a name:

If y =
√
7

3
√
2
, then y′ = 0

If f(x) = a+ b, where a and b are constants, then df
dx = 0

EXERCISE 3.

1. Be sure to take a blank piece of paper, and prove the result without looking at your text. If you get
stuck, study the text, but then close your book again and prove the result yourself. This process may
need to be repeated several times before you are able to write down the entire proof yourself, correctly.

2. The limit of a sum is equal to the sum of the limits, provided that each ‘component’ limit exists. In
the previous proof, the hypotheses state that both f and g are differentiable at x. This tells us that
the limits

lim
h→0

f(x+ h)− f(x)

h
and lim

h→0

g(x+ h)− g(x)

h

both exist. Since these component limits exist, we were able to write:

lim
h→0

f(x+ h)− f(x)

h
+
g(x+ h)− g(x)

h
= lim

h→0

f(x+ h)− f(x)

h
+ lim

h→0

g(x+ h)− g(x)

h

3. Let f and g be differentiable at x. Then:

lim
h→0

(f − g)(x+ h)− (f − g)(x)

h
= lim

h→0

f(x+ h)− g(x+ h)−
(
f(x)− g(x)

)
h

= lim
h→0

f(x+ h)− f(x)

h
− g(x+ h)− g(x)

h

= lim
h→0

f(x+ h)− f(x)

h
− lim

h→0

g(x+ h)− g(x)

h

= f ′(x)− g′(x)
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EXERCISE 4.

(f + g + h+ k)′(x) =
(
(f + g) + (h+ k)

)′
(x) (group)

= (f + g)′(x) + (h+ k)′(x) (use result once)

= f ′(x) + g′(x) + h′(x) + k′(x) (use result again)

Other groupings could also be used.

EXERCISE 5.

1. First, rewrite: f(x) = 3
√
x = x1/3. Using the simple power rule:

f ′(x) =
1

3
x

1
3−1 =

1

3
x−

2
3

=
1

3
· 1

x2/3
=

1

3
· 1

(x2)
1
3

=
1

3
· 1

3
√
x2

=
1

3
3
√
x2

The expression 3
√
x is defined for all real numbers x; the expression 1

3
3√
x2

is defined for all nonzero real

numbers. BOTH expressions are defined on R − {0}, so the derivative formula is valid for all nonzero
real numbers. (There is a vertical tangent line at x = 0 .)

When x = 1, f(1) = 3
√

1 = 1, so the point (1, 1) lies on the graph of f . The slope of the tangent line
here is given by f ′(1) = 1

3
3√
12

= 1
3 . The equation of the tangent line to the graph of f when x = 1 is:

y − 1 =
1

3
(x− 1)

2. First, rewrite: f(x) = 1√
x

= 1
x1/2 = x−1/2. Using the simple power rule:

f ′(x) = −1

2
x−

1
2−1 = −1

2
x−

3
2

= −1

2
· 1

x3/2
= −1

2
· 1

(x3)
1
2

= −1

2
· 1√

x3
= − 1

2
√
x3

The expression 1√
x

is defined for all positive real numbers x, as is the expression − 1

2
√
x3

. Thus, the

derivative formula is valid for all positive real numbers.

When x = 1, f(1) = 1√
1

= 1, so the point (1, 1) lies on the graph of f . The slope of the tangent line

here is given by f ′(1) = − 1

2
√
13

= − 1
2 . The equation of the tangent line to the graph of f when x = 1

is:

y − 1 = −1

2
(x− 1)
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3. First, rewrite:

f(x) =
√
x

3
√
x2 = x1/2 · (x2)

1/3
= x1/2x2/3 = x

1
2+

2
3 = x

3
6+

4
6 = x

7
6

Using the simple power rule:

f ′(x) =
7

6
x

7
6−1 =

7

6
x

1
6 =

7

6
6
√
x

The expression
√
x

3
√
x2 is defined for all nonnegative real numbers x, as is the expression 7

6
6
√
x . Thus,

the derivative formula is valid on the interval [0,∞).

When x = 1, f(1) = 1, so (again!) the point (1, 1) lies on the graph of f . The slope of the tangent line

here is f ′(1) = 7
6

6
√

1 = 7
6 . The equation of the tangent line to the graph of f when x = 1 is:

y − 1 =
7

6
(x− 1)

EXERCISE 6.

1. The term ‘types’ are:

x9 x8h x7h2 x6h3 x5h4 x4h5 x3h6 x2h7 xh8 h9

The coefficients come from the row of Pascal’s triangle that begins with ‘1 9 ’:

(x+ h)9 = x9 + 9x8h+ 36x7h2 + 84x6h3 + 126x5h4 + 126x4h5 + 84x3h6 + 36x2h7 + 9xh8 + h9

2. (x− h)4 = x4 + 4x3(−h) + 6x2(−h)2 + 4x(−h)3 + (−h)4 = x4 − 4x3h+ 6x2h2 − 4xh3 + h4

3.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)4 − x4

h

= lim
h→0

(x4 +

one factor of h︷ ︸︸ ︷
4x3h +

more than one h︷ ︸︸ ︷
6x2h2 + 4xh3)− x4

h

= lim
h→0

h(4x3 + 6x2h+ 4xh2)

h

= lim
h→0

(4x3 + 6x2h+ 4xh2)

= 4x3

EXERCISE 7.

1. First, rewrite: f(x) = ex+5 = exe5 = (e5) · ex

Then:

f ′(x) = e5 · d
dx

(ex) = e5 · ex = e5+x = ex+5

Thus, f ′(x) = f(x). Again, the y-value of the point on the graph of f tells us the slope of the tangent
line at that point!
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2. First, rewrite: f(x) = ln 7x = ln 7 + lnx

Then:

f ′(x) =
d

dx
(ln 7) +

d

dx
(lnx)

= 0 +
1

x
=

1

x

3. Although the function f(x) = e2x can be rewritten as f(x) = (ex)2, this doesn’t help us to differentiate
it. We need to know how to differentiate a FUNCTION to a power. As soon as learn how to differentiate
composite functions, we’ll be able to (easily) differentiate e2x.

4. There is no easy way to rewrite the log of a sum. Again, this problem must be postponed until we know
how to differentiate composite functions.

EXERCISE 8.

1. The lead-in phrase, ‘For all real numbers x and y,’ informs the reader of the universal sets for the
variables x and y. That is, in the remainder of the sentence, x and y are allowed to be any real
numbers.

The two sentences being compared in (*) are ‘y = 3
√
x’ and ‘y3 = x’. These sentences are equivalent;

thus, no matter what real numbers are substituted in for x and y, the sentences will have the SAME
truth values.

Indeed, the sentence ‘y = 3
√
x’ is being defined; the reader is being told that whenever the sentence

‘y3 = x’ is true, so is ‘y = 3
√
x’; and whenever the sentence ‘y3 = x’ is false, so is ‘y = 3

√
x’.

When y = 2 and x = 8, the sentence ‘y3 = x’ becomes ‘23 = 8’, which is true, hence so is the sentence
‘2 = 3

√
8’.

When y = −2 and x = 8, the sentence ‘y3 = x’ becomes ‘(−2)3 = 8’, which is false, hence so is the

sentence ‘−2 = 3
√

8’.

2. The lead-in phrase, ‘For all x ≥ 0 and for all real numbers y,’ informs the reader of the universal sets
for the variables x and y. That is, in the remainder of the sentence, x represents a nonnegative number,
and y is any real number.

The two sentences being compared in (**) are ‘y =
√
x’ and ‘y ≥ 0 and y2 = x’. These sentences are

equivalent; thus, no matter what numbers are substituted in for x and y from their universal sets, the
sentences will have the SAME truth values.

Indeed, the sentence ‘y =
√
x’ is being defined; the reader is being told that whenever the sentence

‘y ≥ 0 and y2 = x’ is true, so is ‘y =
√
x’; and whenever the sentence ‘y ≥ 0 and y2 = x’ is false, so is

‘y =
√
x’.

When y = 2 and x = 4, the sentence ‘y ≥ 0 and y2 = x’ becomes ‘2 ≥ 0 and 22 = 4’, which is true,
hence so is the sentence ‘2 =

√
4’.

When y = −2 and x = 8, the sentence ‘y ≥ 0 and y2 = x’ becomes ‘−2 ≥ 0 and (−2)2 = 4’, which is

false, hence so is the sentence ‘−2 =
√

4’. (If necessary, review the mathematical meaning of the word
‘and’, from Chapter 1.)

3. 5
√
−32 = −2, since (−2)5 = −32

4. 4
√

(−2)4 = 2, since 2 ≥ 0 and 24 = (−2)4

5.
6
√
x6 = |x|, since |x| ≥ 0 and (|x|)6 = x6

6.
9
√
x9 = x, since (x)9 = x9
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EXERCISE 9.

To illustrate the idea behind am

an = am−n, suppose that m > n and a 6= 0, and write:

am

an
=

m factors of a︷ ︸︸ ︷
a · . . . · a
a · . . . · a︸ ︷︷ ︸

n factors of a

=

n factors of 1︷ ︸︸ ︷(a · . . . · a
a · . . . · a

)
·

m−n factors of a︷ ︸︸ ︷(a · . . . · a
1

)
=
am−n

1
= am−n

Have fun with the rest!

EXERCISE 10.

1. Roughly, the sentence ‘ln a
b = ln a− ln b’ says that the log of a quotient is the difference of the logs.

Let a > 0 and b > 0. Then:

y = ln a− ln b ⇐⇒ ey = eln a−ln b (ex is a 1− 1 function)

⇐⇒ ey =
eln a

eln b
(properties of exponents, ex 6= 0)

⇐⇒ ey =
a

b
(eln a = a and eln b = b)

⇐⇒ ln ey = ln
a

b
(lnx is a 1− 1 function)

⇐⇒ y = ln
a

b
(ln ey = y)

Thus, the sentences y = ln a − ln b and y = ln a
b always have the same truth values. That is, ln a

b =
ln a− ln b .

2. Let a > 0 ; b can be any real number. Then:

y = b ln a ⇐⇒ ey = eb ln a (ex is a 1− 1 function)

⇐⇒ ey = (eln a)b (properties of exponents)

⇐⇒ ey = ab (eln a = a)

⇐⇒ ln ey = ln ab (lnx is a 1− 1 function)

⇐⇒ y = ln ab (ln ey = y)

Thus, the sentences y = ln ab and y = b ln a always have the same truth values. That is, ln ab = b ln a.
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END-OF-SECTION EXERCISES:

1. After we get the chain rule, there will be an easier way to differentiate this function. For now, we must
first multiply it out, using Pascal’s triangle to help:

(2x+ 1)3 = (1)(2x)3 + (3)(2x)2(1) + (3)(2x)1(1)2 + (1)(1)3

= 8x3 + 12x2 + 6x+ 1

Thus:

f ′(x) =
d

dx
(8x3 + 12x2 + 6x+ 1)

= 24x2 + 24x+ 6

= 6(4x2 + 4x+ 1)

= 6(2x+ 1)2

2. First, rewrite g in a more suitable form:

g(x) =

√
x+ 1
7
√
x

=

√
x

7
√
x

+
1
7
√
x

=
x1/2

x1/7
+

1

x1/7
= x

1
2−

1
7 + x−

1
7

= x
7
14−

2
14 + x−

1
7 = x

5
14 + x−

1
7

Then:

f ′(x) =
d

dx

(
x

5
14 + x−

1
7

)
=

5

14
x

5
14−1 + (−1

7
)x−

1
7−1

=
5

14
x−

9
14 − 1

7
x−

8
7 =

5

14
14
√
x9
− 1

7
7
√
x8

3. A quick sketch helps. For x ≥ 1, the graph is a (piece of) a parabola. Note that h(1) = 3(1)2−2(1)+1 =
2, and D(h) = R.

For x > 1 and x < 1, h is differentiable, and:

h′(x) =

{
6x− 2 for x > 1

4 for x < 1

To see if h is differentiable at 1, we could investigate two one-sided limits. Alternately, observe that:

As x approaches 1 from the right, the slopes of the tangent lines approach 6(1)− 2 = 4 .

As x approaches 1 from the left, the slopes of the tangent lines are all 4 .

The ‘directions’ as we approach 1 from both the left and the right agree! Thus, h is also differentiable
at 1, and h′(1) = 4 . Thus, we can write:

h′(x) =

{
6x− 2 for x ≥ 1

4 for x < 1
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4. A quick sketch helps. The graph looks the same as in the previous question, except the slope of the
tangent line for the ‘left-hand piece’ is 3 . Still, h(1) = 3(1)2 − 2(1) + 1 = 2, and D(h) = R.

For x > 1 and x < 1, h is differentiable, and:

h′(x) =

{
6x− 2 for x > 1

3 for x < 1

To see if h is differentiable at 1, we could investigate two one-sided limits, and show that they do NOT
agree. Alternately, observe that:

As x approaches 1 from the right, the slopes of the tangent lines approach 6(1)− 2 = 4 .

As x approaches 1 from the left, the slopes of the tangent lines are all 3 .

The ‘directions’ as we approach 1 from both the left and the right do NOT agree! Thus, h is not
differentiable at 1 .


