
4.8 Implicit Differentiation
(Optional)

Introduction;

y = f(x)
explicit representation

You are used to seeing equations of the form:

y = f(x)

Here, y is isolated on one side of the equation, and all the x’s appear on the
other side. In such a case, one says that y is given explicitly in terms of x. When
such a representation is possible, y is truly a function of x; once a choice for
x is made, substitution into the formula f(x) yields the corresponding unique
value of y.

implicit
representation

Often, it is inconvenient or impossible to solve for y in terms of x. In many
such instances, the inability to solve uniquely for y in terms of x stems from
the fact that y is not a function of x.

For example, the graph of 3(x2 + y2)2 = 100xy is shown below. Although y
is not a function of x, one can still talk about the slopes of tangent lines at
various points on the graph. However, since we are not dealing with a function,
to specify the location in the graph in which there is interest, it is necessary to
specify both an x and y value.

If a relationship between x and y is such that y is not solved explicitly in terms
of x, then one says that y is expressed implicitly in terms of x.
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y is locally
a function of x

The technique of implicit differentiation is used to get information about slopes
of tangent lines, in cases when y is given implicitly in terms of x. The key idea
is this: although y is not (globally) a function of x, if attention is restricted to
a local situation, then y CAN be viewed as a function of x (at most points).

Think about it this way: take a ‘mini’ coordinate system, and center the origin
at a point on a curve. If it is possible to draw a circle (no matter how small!)
around this coordinate system, within which one sees the graph of a function,
then, locally, y is a function of x.

The sketches below show several points at which y IS locally a function of x.

The sketches below show three points at which y is NOT locally a function of
x. No matter how small a circle is drawn around the point, there is no way to
enclose a piece of graph for which y is a function of x.

EXERCISE 1 ♣ On the graphs below, identify any points where y is NOT locally a function
of x.

the technique of
implicit differentiation

Implicit differentiation works like this: given a relationship between x and y,
differentiate both sides of the equation with respect to x, remembering that
(locally, at least!) y is a function of x.
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if y is a function of x,
then it must be
differentiated
accordingly

Suppose that y is a function of x, say y = y(x). Then, y must be differenti-
ated using the rules that are appropriate for differentiating functions of x. For
example:

d

dx
y3 =

d

dx
(y(x))3 = 3(y(x))2 · y′(x)

This is usually written more simply as:

d

dx
y3 = 3y2

dy

dx

Similarly:
d

dx
x ln y = x(

1

y
)
dy

dx
+ ln y

EXERCISE 2 Find the following derivatives, treating y as a function of x.

♣ 1. d
dx (y2)

♣ 2. d
dx (xy)

♣ 3. d
dx (x + y)3

♣ 4. d
dx (ln y)

when y is a
function of x,
the formula for dy

dx
is also
a function of x

Whenever y is a (global) function of x, then each point on the curve is uniquely
identified by its x-coordinate. In particular, if one wants to talk about the slope
of a tangent line at a point, it is only necessary to specify the x-coordinate to
locate the point. Therefore, whenever y is a function of x, dy

dx is also a function
of x.

However, if y is NOT a function of x, then to identify a point on the curve,
BOTH its x and y coordinates are needed. So, to talk about the slope of a
tangent line at a particular point, one also needs to specify both coordinates.
In such cases, then, the formula for dy

dx involves BOTH x AND y.



260 copyright Dr. Carol JV Fisher Burns http://www.onemathematicalcat.org

EXAMPLE Consider the equation x2 + y2 = 1. The set of all points (x, y) that make this
equation true is the circle of radius 1, centered at the origin. (See the Algebra
Review on circles at the end of this section.)

Observe that y is not (globally) a function of x. However, at all points except
(1, 0) and (−1, 0), y is locally a function of x.

Differentiating both sides of x2 + y2 = 1 with respect to x, and remembering
that (at least locally) y is a function of x, yields:

2x + 2y
dy

dx
= 0

In this case, it is possible to solve for dy
dx :

dy

dx
=
−2x

2y
= −x

y

Observe that this formula for dy
dx depends on both x and y. This was expected,

since both an x and y coordinate are needed to uniquely identify the point where
the slope of the tangent line is desired.

The formula seems to yield reasonable results. For example, dy
dx |(0,1) = − 0

1 = 0 .
This information reflects the fact that the slope of the tangent line at the point
(0, 1) is horizontal.

Also, dy
dx |(0,−1) = − 0

−1 = 0 . Again, the tangent line at (0,−1) is horizontal.

Some additional examples are given below. Note in particular that the formula
for the derivative fails when y = 0; there are vertical tangent lines at these
points.
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same example,
different viewpoint

In the previous example, the equation x2 + y2 = 1 could have been solved for
y, to obtain:

y = ±
√

1− x2

Here, the ‘+’ sign yields the upper half of the circle, and the ‘−’ sign the lower
half of the circle. Differentiating y = +

√
1− x2 in the normal way yields the

slopes of the tangent lines to the upper half of the circle:

dy

dx
=

1

2
(1− x2)−1/2 · (−2x) = − x√

1− x2
= −x

y

Thus, the formula is compatible with that obtained by implicit differentiation.
However, differentiating implicitly was much easier than this latter approach.

EXERCISE 3 ♣ Differentiate y = −
√

1− x2 to get a formula for dy
dx that is valid for the lower

half of the circle. Show that the result is compatible with the formula obtained
by differentiating implicitly.

EXERCISE 4 ♣ 1. Graph the equation (y − 2)2 + x2 = 9 .

♣ 2. At what points on the graph is y NOT locally a function of x?

♣ 3. Find dy
dx by differentiating implicitly. At what point(s) does the formula

fail? Why?

further uses
for
implicit differentiation

There are two other common situations where implicit differentiation is ex-
tremely useful. These are discussed next.

differentiating
complicated
products & quotients

Recall that the log of a product is the sum of the logs; the log of a quotient
is the difference of the logs. Since differentiating sums and differences is much
easier than differentiating products and quotients, we can exploit the logarithm
as illustrated in the next example.
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EXAMPLE

logarithmic
differentiation

Problem: Differentiate y =
x2(x− 2)√

2x− 3
.

Solution: First, find the natural logarithm of y :

ln y = ln(x2(x− 2))− ln
√

2x− 3

= lnx2 + ln(x− 2)− ln(2x− 3)1/2

= 2 lnx + ln(x− 2)− 1

2
ln(2x− 3)

In the equation

ln y = 2 lnx + ln(x− 2)− 1

2
ln(2x− 3) ,

y is given implicitly as a function of x. Implicit differentiation yields:

1

y

dy

dx
=

2

x
+

1

x− 2
− 1

2
· 1

2x− 3
· 2

Since y truly is a function of x in this example, we expect to be able to get a
formula for the derivative as a function of x, and we certainly can:

dy

dx
= y ·

[
2

x
+

1

x− 2
− 1

2x− 3

]
=

x2(x− 2)√
2x− 3

[
2

x
+

1

x− 2
− 1

2x− 3

]
This process of differentiating a function y by first taking the logarithm and then
using implicit differentiation is often referred to as logarithmic differentiation.

EXERCISE 5 Use logarithmic differentiation to differentiate:

♣ 1. y = (
1

x
)(

1

2x− 1
)(

1

3x− 1
)

♣ 2. y =
x4 3
√
x− 1

5
√

2x + 1

differentiating
variable expressions
to variable powers;

logarithmic
differentiation

Another common use for implicit differentiation is in differentiating variable
expressions raised to variable powers, illustrated next.

Suppose that y = x2x. The extended power rule for differentiation does not
apply here, since the exponent is not a constant. Instead, find the natural
logarithm of y ,

ln y = lnx2x = 2x lnx

and then differentiate implicitly:

1

y

dy

dx
= 2x

1

x
+ (2)(lnx) = 2(1 + lnx)

Since y is truly a function of x, we expect to be able to express the derivative
as a function of x, and we can:

dy

dx
= y · 2(1 + lnx) = 2x2x(1 + lnx)
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EXERCISE 6 Use logarithmic differentiation to differentiate. In each case, write dy
dx as a

function of x.

♣ y = xx

♣ y = (2x)x

♣ y = (2x)3x

♣ y = (
√
x + 1)(x

2)

ALGEBRA REVIEW
circles

EXERCISE 7

the relationship
between the sentences
a = b and a2 = b2

Consider the equations a = b and a2 = b2.

♣ 1. Show that these equations are NOT equivalent. That is, find choices
for a and b for which the sentences a = b and a2 = b2 have different truth
values.

♣ 2. Now consider the sentence:

For a ≥ 0 and b ≥ 0, a = b ⇐⇒ a2 = b2 .

The phrase ‘For . . . ’ has been used to restrict the universal sets for a and
b to the nonnegative real numbers. This sentence asserts that, as long as
both a and b are nonnegative, then the equations a = b and a2 = b2 WILL
always have the same truth values. Convince yourself that this is true.

♣ 3. Conclude the following: if you are in a situation where it is known that
both a and b are nonnegative, then the sentence a = b can be replaced, if
convenient, by the equation a2 = b2.

distance between
two points

Recall first that the distance between points (x1, y1) and (x2, y2) is given by:√
(y2 − y1)2 + (x2 − x1)2

This formula is an immediate consequence of Pythagorean’s Theorem.
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circles Now, it is desired to find the equation of the circle with center (h, k) and radius
r. That is, we seek an equation that is true for all points (x, y) that lie on the
circle of radius r centered at the point (h, k).

This is easy to get: we want those points (x, y) whose distance from (h, k) is
equal to r. That is, we want points (x, y) satisfying:√

(y − k)2 + (x− h)2 = r

Since both sides of this equation are nonnegative (r is the radius of a circle, and
square roots are nonnegative), an equivalent equation is obtained by squaring
both sides (see Exercise #7):

(y − k)2 + (x− h)2 = r2

This is the equation of the circle centered at (h, k), with radius r.

EXAMPLE Problem: Graph x2 + y2 = 1 .

Solution: Rewrite:

x2 + y2 = 1 ⇐⇒ (x− 0)2 + (y − 0)2 = 12

This is the circle centered at (0, 0) with radius 1 .

Problem: Graph (3− y)2 + (x + 1)2 = 4 .

Solution: Rewrite:

(3− y)2 + (x + 1)2 = 4 ⇐⇒ (y − 3)2 + (x− (−1))2 = 22

This is the circle centered at (−1, 3) with radius 2 .

Problem: Graph x2 + y2 + 3y = 7
4 .

Solution: Rewrite, by completing the square:

x2 + y2 + 3y =
7

4
⇐⇒ x2 + (y2 + 3y + (

3

2
)2) =

7

4
+ (

3

2
)2

⇐⇒ x2 + (y +
3

2
)2 =

7

4
+

9

4

⇐⇒ x2 + (y − (−3

2
))2 = 22

This is the circle centered at (0,− 3
2 ) with radius 2 .
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QUICK QUIZ

sample questions

1. Let xy2 = 2 . Find dy
dx , by differentiating implicitly.

2. Let y = x2x. Find y′, by using logarithmic differentiation.

3. Graph x2 − 2x + y2 = 8 .

4. Write an equation where y is given explicitly in terms of x; where y is given
implicitly in terms of x.

5. On the sketch below, identify any point(s) where y is NOT locally a function
of x.

KEYWORDS

for this section

Explicit versus implicit representations, y is locally a function of x, implicit
differentiation, logarithmic differentiation, differentiating complicated products
and quotients, differentiating variable expressions to variable powers, equations
of circles.

END-OF-SECTION
EXERCISES

♣ Graph the equation (each is a circle).

♣ Identify any point where y is NOT locally a function of x.

♣ Find y′ by differentiating implicitly.

♣ Check that the given point(s) lie on the circle; write the equation of the
tangent line at these points.

1. x2 + 4x + y2 − 2y + 4 = 0; (−2, 2), (−1, 1)

2. x2 + 4x + y2 − 2y = −4; (−2, 0), (−3, 1)

3. 4x− 2y = −x2 − y2 − 1; (−1, 1 +
√

3)

4. 4x− 2y = −x2 − y2 − 1; (−1, 1−
√

3)


