Dividing More Than One Term by a Single Term
For all real numbers $\,A\,$ and $\,B\,,$ and for $\,C\ne 0\,$:
$$ \begin{gather} \cssId{s2}{\frac{A+B}{C} = \frac{A}{C} + \frac{B}{C}}\cr\cr \cssId{s3}{\text{ and }} \cr\cr \cssId{s4}{\frac{A-B}{C} = \frac{A}{C} - \frac{B}{C}} \end{gather} $$Key idea: every term in the numerator must be divided by the denominator.
Examples
The goal: go immediately from the original expression (like $\,\frac{2t - t^3 + 10t^4}{5t^3}\,$) to the final expression ($\,\frac{2}{5t^2} - \frac{1}{5} + 2t\,$), without writing down any intermediate step(s).
To do this, use the ‘three-pass’ system (Sign/Size/Variable), illustrated next:
$\displaystyle \frac{\class{highlight}{2t} - t^3 + 10t^4}{\class{highlight}{5t^3}}$ |
Result: $\displaystyle\frac{\color{green}{2}}{\color{green}{5}\color{blue}{t^2}}$ |
$\displaystyle \frac{2t\class{highlight}{ - t^3} + 10t^4}{\class{highlight}{5t^3}}$ |
Result: $\displaystyle \color{red}{-}\, \frac{\color{green}{1}}{\color{green}{5}}$ |
$\displaystyle \frac{2t - t^3\class{highlight}{ + 10t^4}}{\class{highlight}{5t^3}}$ |
Result: $\displaystyle \color{red}{+}\ \color{green}{2}\color{blue}{t}$ |